Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:41:37.689Z Has data issue: false hasContentIssue false

From Atomistic to Continuum Descriptions of Morphological Evolution

Published online by Cambridge University Press:  01 February 2011

Christoph A. Haselwandter
Affiliation:
The Blackett Laboratory, Imperial College, London, SW7 2BW, United Kingdom
Dimitri D. Vvedensky
Affiliation:
The Blackett Laboratory, Imperial College, London, SW7 2BW, United Kingdom
Get access

Abstract

Lattice Langevin equations are derived from the rules of lattice growth models. These provide an exact mathematical description that is suitable for direct analysis, such as the passage to the continuum limit, as well as a computational alternative to kinetic Monte Carlo simulations. This approach is applied to ballistic deposition and a model for conditional deposition, both of which yield the Kardar–Parisi– Zhang equation in the continuum limit, and a model of strain relaxation during heteroepitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Halpin–Healy, T. and Zhang., Y.–C., Phys. Rep. 254, 215 (1995).Google Scholar
2. Barabási, A.–L. and Stanley, H.E., Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).Google Scholar
3. Madhukar, A. and Ghaisas, S. V., CRC Crit. Rev. Solid State Mater. Sci. 14, 1 (1988).Google Scholar
4. Metiu., H., Liu., Y.–T., and Zhang., Z., Science 255, 1088 (1992).Google Scholar
5. Shitara., T., Vvedensky, D. D., Wilby, M. R., Zhang., J., Neave, J. H., and Joyce, B. A., Phys. Rev. B 46, 6815 (1992).Google Scholar
6. Edwards, S. F. and Wilkinson, D. R., Proc. R. Soc. London Ser. A 381, 17 (1982).Google Scholar
7. Kardar., M., Parisi., G., and Zhang., Y.–C., Phys. Rev. Lett. 56, 889 (1986).Google Scholar
8. Villain., J., J. Phys. I (France) 1, 19 (1991).Google Scholar
9. Lai, Z.–W. and Das Sarma, S., Phys. Rev. Lett. 66, 2348 (1991).Google Scholar
10. Ratsch., C., Gyure, M. F., Chen., S., Kang, M. and Vvedensky, D. D., Phys. Rev. B 61, R10598 (2000).Google Scholar
11. van Kampen, N. G., Stochastic Processes in Physics and Chemistry (North–Holland, Amsterdam, 1981).Google Scholar
12. Vvedensky, D. D., Zangwill., A., Luse, C. N. and Wilby, M. R., Phys. Rev. E 48, 852 (1993).Google Scholar
13. Baggio., C., Vardavas., R., and Vvedensky, D. D., Phys. Rev. E 64, 045103(R) (2001).Google Scholar
14. Chua., A., Haselwandter, C. A., Baggio., C., and Vvedensky, D. D., to be published.Google Scholar
15. Kurtz, T. G., Math. Prog. Stud. 5, 67 (1976).Google Scholar
16. Kurtz, T. G., Stoch. Proc. Appl. 6, 223 (1978).Google Scholar
17. Fox, R. F. and Keizer., J., Phys. Rev. A 43, 1709 (1991).Google Scholar
18. Vold, M. J., J. Colloid Interface Sci. 18, 684 (1963).Google Scholar
19. Sutherland, D. N., J. Colloid Interface Sci. 22, 300 (1966).Google Scholar
20. Family, F. and Vicsek., T., J. Phys. A: Math. Gen. 18, L75 (1985).Google Scholar
21. Vvedensky, D. D., Phys. Rev. E 68, 010601(R) (2003).Google Scholar
22. Medina., E., Hwa., T., Kardar., M., and Zhang., Y.–C., Phys. Rev. A 39, 3053 (1989).Google Scholar
23. Baiod., R., Kessler., D., Ramanlal., P., Sander., L., and Savit., R., Phys. Rev. A 38, 3672 (1988).Google Scholar
24. Aarão Reis, F. D. A., Phys. Rev. E 63, 056116 (2001).Google Scholar
25. Meakin., P., Ramanlal., P., Sander, L. M., and Ball, R. C., Phys. Rev. A 34, 5091 (1986).Google Scholar
26. Meakin., P., Phys. Rep. 235, 189 (1993).Google Scholar
27. D'Souza, R. M., Int. J. Mod. Phys. C 8, 941 (1997).Google Scholar
28. Kim, J. M. and Kosterlitz, J. M., Phys. Rev. Lett. 62, 2289 (1989).Google Scholar
29. D'Souza, R. M., Bar–Yam, Y., and Kardar., M., Phys. Rev. E 57, 5044 (1998).Google Scholar
30. Ratsch., C., Šmilauer, P., Vvedensky, D. D., and Zangwill., A., J. Phys. I (France) 6, 575 (1996).Google Scholar
31. Golovin, A. A., Davis, S. H., and Voorhees, P. W., Phys. Rev. E 68, 056203 (2003).Google Scholar