Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T15:03:23.183Z Has data issue: false hasContentIssue false

Fresh Properties of Mortar made with Pozzolanic Cement and Water Reducers

Published online by Cambridge University Press:  10 December 2012

María E. Sosa
Affiliation:
LEMIT, 52 entre 121 y 122, 1900 La Plata, Argentina
Yury A. Villagrán-Zaccardi
Affiliation:
LEMIT, 52 entre 121 y 122, 1900 La Plata, Argentina CONICET, Argentina
Claudio J. Zega
Affiliation:
LEMIT, 52 entre 121 y 122, 1900 La Plata, Argentina CONICET, Argentina
P.Peralta Juan
Affiliation:
LEMIT, 52 entre 121 y 122, 1900 La Plata, Argentina
Get access

Abstract

Natural pozzolans are supplementary cementitious materials (SCMs) that may be used to improve the properties of mortar and concrete, through the formation of additional hydration products by pozzolanic action. Water reducers (WR) play a main role in high performance concrete in terms of durability, strength and surface finishing. A first optimization of constituent proportions in paste and/or mortar is convenient to assess the compatibility between the WR and the cementitious materials. The compatibility between cement and WR may be affected by SCMs, as they can also interact with the molecules of the admixture. However, the practical implication may be variable. This paper deals with the influence of different types and dosages of WRs in mortars made with pozzolanic Portland cement. Both medium and high ranges WRs have been used. Mortar fluidity has been tested by the spread and the slump tests. Results show different fluidizing capacities of WRs, among which polycarboxylate-based WR was the most compatible with the pozzolanic cement.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boukendakdji, O., Kadri, El-H., Kenai, S., Cem. Concr. Compos., 34, 583590 (2012).CrossRefGoogle Scholar
Aïtcin, P.-C., Jolicoeur, C., MacGregor, G.J., Int. Concr. Res., 16, 4552 (1994)Google Scholar
Menéndez, G., Bonavetti, V.L., Donza, H., Rahhal, V., Irassar, E.F., in Memorias 15a Reunión Técnica de la Asociación Argentina del Hormigón, (Santa Fé, Argentina, 2003), 8p.Google Scholar
Alonso, M.M., Palacios, M., Puertas, F. et al. ., Mater. Construcc., 286, 6581 (2007).Google Scholar
Bonen, D., Sarkar, S.L., Cem. Concr. Res., 25, 14231434, (1995).CrossRefGoogle Scholar
Rixom, R., Mailvaganam Noel, N., Chemical Admixtures for Concrete (Third Edition), E&FN Spon (London, England), 437p., (1999).Google Scholar
Griesser, A., Cement-Superplasticizer interactions at ambient temperatures. Rheology, phase composition, pore water, and heat of hydration of cementitious systems. PhD Thesis, Swiss Federal Institute of Technology, (Zurich, Switzerland), 147p., (2002).Google Scholar
Nkinamubanzi, P.-C., Kim, B.-G., Saric Coric, M., Aïtcin, P.-C., in Sixth CANMET/ACI International Conference on Superplasticizers and other Chemical Admixtures in Concrete, Supplementary Papers, (Nice, France, 2000), pp. 3354, (2000).Google Scholar
Kim, B.-G., Jiang, S.P., Aïtcin, P.-C., Mater. Struct., 33, 363369, (2000).CrossRefGoogle Scholar
Aïtcin, P.-C., Binders for Durable and Sustainable Concrete, (Taylor & Francis, Oxon, UK), 500p., (2008).Google Scholar
Yamada, K., Hanehara, S., Concr. Sci. Eng., 3, 135145, (2001).Google Scholar
Saric-Coric, M., Interactions superplastifiant-laiter dans les ciments au laitier: propriećtećs du bećton, Ph.D. thesis, Université de Sherbrooke (Québec, Canada), 291p. (2001).Google Scholar
Alonso López, M.M., Comportamiento y compatibilidad de cementos y aditivos basados en policarboxilatos. Efecto de la naturaleza de los cementos y estructura de los aditivos, Tesis Doctoral, IETcc (Madrid, Spain), 361p., (2011).Google Scholar
Erdogdu, S., Cem. Concr. Res., 30, 767773, (2000).CrossRefGoogle Scholar
Diamantonis, N., Marinos, I., Katsiotis, M.S., Sakellariou, A., Papathanasiou, A., Kaloidas, V., Katsioti, M., Constr. Build. Mater., 24, 15181522, (2010).CrossRefGoogle Scholar
Okamura, H., Ouchi, M., J. Adv. Concr. Technol., 1, 515, (2003).CrossRefGoogle Scholar
EFNARC, Especificaciones y directrices para el hormigón autocompactable. EFNARC (Surrey, UK). 32p. (2002).Google Scholar
Liu, M., Wider application of additions in self-compacting concrete. Thesis of Doctorate. University College London, 392 p., (2009).Google Scholar
NCh 2257/3, Instituto Nacional de Normalización, Chile, 3p., (1996).Google Scholar
Bartos, P., Fresh Concrete. Properties and Tests, Elsevier (London, UK), 292p., (1992).Google Scholar
Aïtcin, P.-C., High Performance Concrete, E&FN Spon (New York, USA), 591p., (1998).CrossRefGoogle Scholar