Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T00:58:53.553Z Has data issue: false hasContentIssue false

Free-standing Smectic LC Elastomer Films

Published online by Cambridge University Press:  15 March 2011

C. Tolksdorf
Affiliation:
Universität Mainz, Institut für Organische Chemie, Duesbergweg 10-14, D-55099 Mainz
R. Zentel
Affiliation:
Universität Mainz, Institut für Organische Chemie, Duesbergweg 10-14, D-55099 Mainz
R. Köhler
Affiliation:
Universität Leipzig, Institut für Experimentalphysik I, Linnestrasse 5, D-04103 Leipzig
U. Dietrich
Affiliation:
Universität Leipzig, Institut für Experimentalphysik I, Linnestrasse 5, D-04103 Leipzig
M. Lösche
Affiliation:
Universität Leipzig, Institut für Experimentalphysik I, Linnestrasse 5, D-04103 Leipzig
R. Stannarius
Affiliation:
Universität Leipzig, Institut für Experimentalphysik I, Linnestrasse 5, D-04103 Leipzig
Get access

Abstract

We probe the mesophase transitions and layer structures in thin ordered smectic liquid crystalline elastomer films by means of x-ray diffraction and optical microscopy. Oriented elastomer films of submicrometer thickness are produced by crosslinking freely suspended smectic polymer films. After crosslinking, the mesomorphism is similar to that of the precursor polymer. Smectic layers align parallel to the film plane. The layer spacing increases with temperature in the SmC* phase while it decays above the SmC*-SmA transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gleim, W., Finkelmann, H., in “Side Chain Liquid Crystalline Polymers”, ed. McArdle, C.B., (Blackie and Son: Glasgow 1989); H. Finkelmann, in “Liquid Crystallinity in Polymers”, ed. A. Ciferri (VCH, Weinheim 1991); R. Zentel, Angew. Chem. Adv. Mater. 101, 1437 (1989).Google Scholar
2. Lehmann, W., Skupin, H., Tolksdorf, C., Gebhard, E., Zentel, R., Krüger, P., Lösche, M., Kremer, F., Nature 410, 447 (2001).Google Scholar
3. Brehmer, M. et al., Macromol. Chem. Phys. 195, 1891 (1994); M. Brehmer, R. Zentel, Macromol. Chem. Rapid Commun. 16, 659 (1995); I. Benné, K. Semmler, H. Finkelmann, Macromolecules 28, 1854 (1995);M.Brehmeretal., Liq.Cryst. 21, 589 (1996).Google Scholar
4. Terentjev, E. M.; J. Phys. Cond. Mater. 11, R239 (1999).Google Scholar
5. Gebhard, E., Zentel, R., Liq. Cryst.} 26} 299 (1999).Google Scholar
6. Lehmann, W. et al. Ferroelectrics 208–209, 373 (1998).Google Scholar
7. Skupin, H. et al. J. Macromol. Sci.-Phys. B 38, 709 (1999). S. V.Shilovet al., Liq.Cryst. 22, 203 (1997).Google Scholar
8. Brodowsky, H. M. et al. Langmuir 15, 274 (1999).Google Scholar
9. Kundler, I., Nishikawa, E., Finkelmann, H., Macromol. Symp. 117, 11 (1997); E. Nishikawa, H. Finkelmann, H.R. Brand, Macromol. Rapid Commun. 18, 65 (1997).Google Scholar
10. Hirschmann, H., Velasco, D., Reinecke, H., Finkelmann, H., J. de Physique II 1, 559 (1991).Google Scholar
11.P. M. S. 11, Mitchell, G. R., Davis, F. J., J. de Physique II 7, 1337 (1997).Google Scholar
12. Schmidt, F., Siepmann, J., Stille, W., Strobl, G. R., Mol. Cryst. Liq.Cryst. 350, 103 (2000).Google Scholar
13. Schüring, H., Stannarius, R., Tolksdorf, C., Zentel, R.; Macromolecules 34, 3962 (2001).Google Scholar
14. Schüring, H., Stannarius, R., Tolksdorf, C., Zentel, R.; Mol. Cryst. Liq. Cryst. 364, 305 (2001).Google Scholar
15. Stannarius, R. and Cramer, Ch., Europhys. Lett. 42, 43, (1998).Google Scholar
16. Diele, S. et al. Macromol. Chem. 188, 1993 (1987).Google Scholar
17. Krüger, P., et al., Rev. Sci. Instrum. 72, 184 (2001).Google Scholar
18. Köhler, R. et al. Proc. SPIE (submitted).Google Scholar
19. Köhler, R., Diplomarbeit Leipzig 2001.Google Scholar
20.Supplementary information in [13].Google Scholar