Published online by Cambridge University Press: 10 February 2011
We have formed Bi-based ferroelectric films, such as Bi2WO6, Bi2VO5.5(n=1), Bi2SrTa2O9, Bi3TiNbO9(n=2) and Bi4Ti3O12(n=3) using a pulsed laser deposition technique. Especially, the Bi2VO5.5 film shows an atomically smooth surface with a flat 2000-3000Å wide terrace and steps of 8 Å and 16Å which correspond to a half and one unit cell, respectively. The dielectric constant, remanent polarization and coercive field of the Bi2VO5.5 thin films formed on Nb-SrTiO3(100) are 8, 3.0 μ C/cm2 and 16.0 kV/cm, respectively. The Bi2VO5.5 film formed on SiO2/Si(100) shows memory windows of 0.35V against a±2V gate bias during C-V measurements‥
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.