Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:26:24.475Z Has data issue: false hasContentIssue false

Formation of Two-Dimensional Electronic System and Weak Localization in Conducting Langmuir-Blodgett Film of BEDO-TTF with Stearic Acid

Published online by Cambridge University Press:  21 March 2011

Yasuo Ishizaki
Affiliation:
Laboratory of Applied Physics, Tokyo University of Mercantile Marine, 2-1-6 Etchu-jima, Koto-ku, Tokyo 138-8533, Japan
Makoto Suzuki
Affiliation:
Laboratory of Applied Physics, Tokyo University of Mercantile Marine, 2-1-6 Etchu-jima, Koto-ku, Tokyo 138-8533, Japan
Hitoshi Ohnuki
Affiliation:
Laboratory of Applied Physics, Tokyo University of Mercantile Marine, 2-1-6 Etchu-jima, Koto-ku, Tokyo 138-8533, Japan
Tatsuro Imakubo
Affiliation:
Condensed Molecular Materials Laboratory, Riken, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
Mitsuru Izumi
Affiliation:
Laboratory of Applied Physics, Tokyo University of Mercantile Marine, 2-1-6 Etchu-jima, Koto-ku, Tokyo 138-8533, Japan
Get access

Abstract

The organic highly conducting Langmuir-Blodgett (LB) film formed by a molecular association of BEDO-TTF and stearic acid shows the logarithmic decrease of DC conductivity and negative magnetoresistance at low temperature. These data are interpreted by the weak localization of two-dimensional (2D) electronic system inside the homogeneous conducting layer of BEDO-TTF molecules. The electronic length with phase memory has a mesoscopic scale. Strong evidence of the 2D coherent charge transport in the conducting LB film is provided for the first time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohnuki, H., Izumi, M., Imakubo, T., and Kato, R., Phys. Rev. B 55, R10225 (1997); H. Ohnuki and M. Izumi, U.S. Patent No. 6 074 744 (13 June 2000).Google Scholar
2. Izumi, M., Ohnuki, H., Kato, R., Imakubo, T., Nagata, M., Noda, T., and Kojima, K., Thin Solid Films 327–329, 14 (1998).Google Scholar
3. Vignau, L., Ohnuki, H., Nagata, M., Ishizaki, Y., Imakubo, T., Kato, R., and Izumi, M., Mol. Cryst. Liq. Cryst. 332, 99 (1998).Google Scholar
4. Vignau, L., Ohnuki, H., Ishizaki, Y., Imakubo, T., Kato, R., and Izumi, M., Synthetic Metals 102, 1723 (1999).Google Scholar
5. Ohnuki, H., Desbat, B., Giffard, M., Izumi, M., Imakubo, T., Mabon, G., and Delhaes, P., (unpublished).Google Scholar
6. Ishizaki, Y., Izumi, M., Ohnuki, H., Lipinska, K. K., Imakubo, T., and Kobayashi, K., Phys. Rev. B, in press (1 March, 2001); cond-mat./0010464.Google Scholar
7. Izumi, M., Yartsev, V. M., Ohnuki, H., Vignau, L., Delhaes, P., in Recent Research Developments in Physical Chemistry, edited by Pandalai, S. G. (Transworld Research Network, March 2001) in press.Google Scholar
8. Lee, P. A. and Ramakrishnan, T. V., Rev. Mod. Phys. 57, 287 (1985).Google Scholar
9. Imry, Y., Introduction to Mesoscopic Physics (Oxford University Press, New York, 1997).Google Scholar
10. Ferry, D. K. and Goodnick, S.M., Transport in Nanostructures (Cambridge University Press, Cambridge, England, 1997)Google Scholar
11. Ulmet, J. P., Bachere, L., Askenazy, S., Ousset, J. C., Phys. Rev. B 38, 7782 (1988).Google Scholar
12. Fukuyama, H., in Percolation, Localization, and Superconductivity, NATO ASI Series B: Physics 109 (Plenum, New York/London 1984) p. 161.Google Scholar
13. Ong, N. P. and Brill, J. W., Phys. Rev. B 18, 5265 (1978).Google Scholar
14. Bergman, G., Phys. Rev. B 28, 2914 (1983).Google Scholar
15. Senz, V., Heinzel, T., Ihn, T., Ensslin, K., Dehinger, G., Grützmacher, D., Genner, U., Phys. Rev. B, 61, R5082 (2000)Google Scholar