Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:12:34.705Z Has data issue: false hasContentIssue false

Formation of Nanoparticles in A Carbon Arc

Published online by Cambridge University Press:  15 February 2011

S. A. Majetich*
Affiliation:
Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213–3890
J. H. Scott
Affiliation:
Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213–3890
E. M. Brunsman
Affiliation:
Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213–3890
M. E. Mchenry
Affiliation:
Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213–3890
*
Correspondence Author
Get access

Abstract

Details of the carbon-coated nanoparticle growth mechanism are revealed by a comparison of product morphology and reactor parameters. Carbon-coated metal or metal carbide clusters nucleate in the gas phase, grow to characteristic sizes, and deposit on surfaces within the reactor. The surface temperature determines the crystallinity of the nanoparticles and the surrounding carbon. Tungsten carbide nanoparticles show that the carbon coating arises due to phase segregation when the nanoparticle has a lower melting point than that of graphite.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Majetich, S. A., Artman, J. O., McHenry, M. E., Nuhfer, N. T., and Staley, S. W., Phys. Rev. B 48, 16845, 1993; M. E. McHenry, S. A. Majetich, M. De Graef, J. O. Artman, and S. W. Staley, Phys. Rev. B 49, 11358 (1994).Google Scholar
2. Ruoff, R.S., Lorents, D.C., Chan, B., Malhotra, R., and Subramoney, S., Science 259, 346, 1993.Google Scholar
3. Tomita, M., Saito, Y., and Hayashi, T., Jpn. J. Appl. Phys. 32, L280, (1993).Google Scholar
4. Yoshida, Y., Appl. Phys. Lett. 62, 3447 (1993).Google Scholar
5. Seraphin, S., Zhou, D., Jiao, J., Minke, M. A., Wang, S., Yadav, T., and Withers, J. C., Chem. Phys. Lett. 217, 191 (1994).Google Scholar
6. Ladouceur, M., Lalande, G., Guay, D., Dodelet, J. P., Dignard-Bailey, L., Trudeau, M. L., and Schulz, R., J. Electrochem. Soc. 140, 1974 (1993).Google Scholar
7. McHenry, M. E., Nakamura, Y., Kirkpatrick, S., Johnson, F., Majetich, S. A., and Brunsman, E. M., in Fullerenes: Physics. Chemistry. and New Directions VI, eds. Ruoff, R. S. and Kadish, K. M., The Electrochemical Society, Pennington, NJ. 1994, p. 1463.Google Scholar
8. Kirkpatrick, S., McHenry, M. E., DeGraef, M., Smith, P. A., Nakamura, Y., and Laughlin, D. E., Brunsman, E. M., Scott, J. H., Majetich, S. A., Acta Metallurgica (under review).Google Scholar
9. Majetich, S. A., Scott, J. H., Brunsman, E. M., McHenry, M. E., and Nuhfer, N. T., in Fullerenes: Physics. Chemistry. and New Directions VI. eds. Ruoff, R. S. and Kadish, K. M., The Electrochemical Society, Pennington, NJ, 1994, p. 1448.Google Scholar
10. Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., and Hayashi, T., Chem. Phys. Lett. 204, 277 (1993).Google Scholar
11. Brunsman, E. M., Scott, J. H., Majetich, S. A., and McHenry, M. E., Science and Technology of Fullerene Materials, Materials Research Society, Fall 1994, abstract G5.6.Google Scholar
12. Schoenlein, R. W., Lin, W. Z., Fujimoto, J. G., and Eesley, G. L., Phys. Rev. Lett. 58, 1680 (1987).Google Scholar
13. Bloomfield, L. A., Yang, Y. A., Xia, P., and Junkin, A.L., in Clusters and Cluster Assembled Materials. MRS Symp. Proc. 206, eds. Averback, R. S., Bernholc, J., and Nelson, D. L., 1991, p.105.Google Scholar
14. A small amount of product was irretrievably lost because the walls of the copper reactor cannot be scraped clean without Cu contamination. Reactor cleaning between batches of different materials was therefore separate from sample collection.Google Scholar
15. Chai, Y., Guo, T., Jin, C., Haufler, R. E., Chibante, L. P. F., Fure, J., Wang, L., Alford, J. M., and Smalley, R. E., J. Phys. Chem. 95, 7564, 1991.Google Scholar
16. Saito, Y., Okuda, M., Yoshikawa, T., Kasuya, A., and Nishina, Y., J. Phys. Chem. 98, 6696 (1994).Google Scholar
17. Smith, G. W., 15th Biennial Conference on Carbon, June 22-23, 1981, Philadelphia, PA, American Carbon Society, p. 482 Google Scholar
18. Murooka, Y. and Hearne, K. R., J. Appl. Phys. 43, 2656 (1972).Google Scholar
19. Nolan, P. E., Schabel, M. J., and Lynch, D. C., Carbon 35, 1 (1994).Google Scholar