Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T01:38:39.768Z Has data issue: false hasContentIssue false

Formation of Hydrogen Related Defects and Nano-Voids in Plasma Hydrogenated ZnO

Published online by Cambridge University Press:  01 February 2011

Reinhart Job*
Affiliation:
reinhart.job@fernuni-hagen.de, University of Hagen, Mathematics and Computerscience, Universitaetsstr. 27, (EET), Hagen, D-58084, Germany, +4923319871183, +492331987357
Get access

Abstract

Using μ-Raman spectroscopy (μRS) and cathodoluminescence (CL) analyses, the impact of hydrogen plasma treatments on sintered zinc oxide (ZnO) samples was studied. 1 hour H-plasma treatments (150 W, 13.56 MHz) were applied at substrate temperatures between 250 °C and 500 °C. μRS and CL analyses show that plasma hydrogenation causes significant defects in ZnO samples; i) non-specified defect species are established with a maximal density upon H-plasma exposure at 350 °C substrate temperature, and ii) the formation of oxygen vacancies (VO) can be traced. Moreover, μRS reveals vibration modes of H2 molecules trapped in nano-voids. The experimental results indicate that those nano-voids are created by a coalescence of the VO defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., , S., Avrutin, V., Cho, S.-J., Morkoç, H., J. Appl. Phys. 98, 041301 (2005).Google Scholar
2. McCluskey, M. D., Jokela, S. J., Oo, W. M. Hlaing, Mater. Res. Soc. Symp. Proc. 864, 493 (2005).Google Scholar
3. Clarke, D. R., J. Am. Ceram. Soc. 82, 485 (1999).Google Scholar
4. Job, R., Mater. Res. Soc. Symp. Proc. 957, 0957–K10 (2007).Google Scholar
5. Damen, T. C., Porto, S. P. S., Tell, B., Phys. Rev. 142, 570 (1966).Google Scholar
6. Calleja, J. M., Cardona, M., Phys. Rev. B 16, 3753 (1977).Google Scholar
7. Chen, Z. Q., Kawasuso, A., Xu, Y., Naramoto, H., Yuan, X. L., Sekiguchi, T., Suzuki, R., Ohdaira, T., Phys. Rev. B 71, 115213 (2005).Google Scholar
8. Ashkenov, N., Mbenkum, B. N., Bundesmann, C., Riede, V., Lorenz, M., Spemann, D., Kaidashev, E. M., Kasic, A., Schubert, M. Grundmann, M. Wagner, G., Neumann, H., Darakchieva, V., Arwin, H., Monemar, B., J. Appl. Phys. 93, 126 (2003).Google Scholar
9. Callender, R. H., Sussman, S. S., Selders, M., Chang, R. K., Phys. Rev. B 7, 3788 (1973).Google Scholar
10. Jeong, S.-H., Kim, J.-K., Lee, B.-T., J. Phys. D: Appl. Phys. 36, 2017 (2003).Google Scholar
11. Youn, C. J., Jeong, T. S., Han, M. S., Kim, J. H., J. Cryst. Growth 261, 526 (2004).Google Scholar
12. Gorelkinskii, Yu. V., Watkins, G. D., Phys. Rev. B 69, 115212 (2004).Google Scholar
13. Stoicheff, B. P., Can. J. Phys. 35, 730 (1957).Google Scholar
14. Sekiguchi, T., Ohashi, N., Terada, Y., Jpn. J. Appl. Phys. (Part 2) 36, L289 (1997).Google Scholar
15. Strzhemechny, Y. M., Nemergut, J., Smith, P. E., Bae, J., Look, D. C., Brillson, L. J., J. Appl. Phys. 94, 4256 (2003).Google Scholar