Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T15:13:20.739Z Has data issue: false hasContentIssue false

Formation of Foamy Coatings by Laser Ablation of Glass-ceramic Substrates in the Nanosecond Regime Substrate - Temperature and Wavelength Dependence

Published online by Cambridge University Press:  29 July 2011

Daniel Sola
Affiliation:
Centro de Física de Materiales, Universidad del País Vasco-CSIC, Departamento de Física Aplicada I, Alda. de Urquijo s/n, 48.013 Bilbao, Spain
Andrés Escartín
Affiliation:
Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Departamento de Ciencia y Tecnología de Materiales y Fluidos, C/ María de Luna, 3, 50.018 Zaragoza, Spain
Jose I. Peña
Affiliation:
Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Departamento de Ciencia y Tecnología de Materiales y Fluidos, C/ María de Luna, 3, 50.018 Zaragoza, Spain
Get access

Abstract

A study of the formation mechanisms of foamy coatings on the surface of glass-ceramic substrates produced by laser ablation is presented. Three laser systems emitting at 1064, 532 and 355 nm with pulse-widths in the nanosecond range were used. In the NIR range the formation of the coating is only possible when the temperature of the surface is higher than 300 ºC. In this case, the generation is related to an increase of the layer in liquid-phase produced in the interaction zone. However, when the sample is machined at 532 or 355 nm, it is not necessary to heat the whole surface to be processed. In this case, the local temperature and the pressure exerted over the interaction zone produce the generation of this coating, obtaining the layer at room temperature. Furthermore, the coating can be produced at higher speeds. In this way, it is possible to reduce the energetic cost improving the efficiency of the process.

Morphology, microstructure, composition and thermal properties of the layer are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Steen, W.. Laser material processing. Springer Verlag (1999).Google Scholar
2. Bäuerle, Dieter. Laser processing and chemistry. Springer (2000).Google Scholar
3. Allmen, M., Blatter, A.. Laser-beam interactions with materials. Springer (1995).Google Scholar
4. Pauleau, Y.. Materials surface processing by directed energy techniques. Elsevier (2006).Google Scholar
5. Misawa, H., Juodkazis, S.. 3D Laser microfabrication. Wiley (2006).Google Scholar
6. Gamaly, E.G., Rode, A.V., Luther-Davies, B.. J. Appl. Phys. 85 (8) (1999) 42134221.Google Scholar
7. Rode, A.V., Luther-Davies, B., Gamaly, E.G.. J. Appl. Phys. 85 (8) (1999) 42224230.Google Scholar
8. Bulgakova, N. M., Bulgakov, A.V.. Appl. Phys. A 73 (2001).Google Scholar
9. Anisimov, M. A.. Sov. Phys.-Usp. 17 (1975).Google Scholar
10. Chichkov, B. N., Momma, C., Nolte, S., Von Alvensleben, F., Tünnermann, A.. Appl. Phys. A 63 (1996).Google Scholar
11. Momma, C., Chichkov, B.N., Nolte, S., Alvensleben, F., Tünnermann, A., Welling, H., Wellegehausen, B.. Optics Communications 129 (1996).Google Scholar
12. Bulgakov, A.V., Bulgakova, N.M.. Quantum Electronics 29 (1999).Google Scholar
13. Gusarov, A., Smurov, I.. J. Appl. Phys. 97 (2005).Google Scholar
14. Singh, R.K., Narayan, J.. Phys. Rev. B 41 (1990).Google Scholar
15. Pardo, J.A., Peña, J.I., Merino, R.I., Cases, R., Larrea, A., Orera, V.M.. Journal of Non-Crystalline Solids 298 (2002).Google Scholar
16. Balda, R., Merino, R.I., Peña, J.I., Orera, V.M., Fernández, J.. Optical Materials 31 (2009).Google Scholar
17. Balda, R., Merino, R.I., Peña, J.I., Orera, V.M., Arriandiaga, M.A., Fernández, J.. Optical Materials 31 (2009).Google Scholar
18. Balda, R., Fernández, J., Iparraguirre, I., Azkargorta, J., García-Revilla, S., Peña, J.I., Merino, R. I., Orera, V.M.. Optics Express 17 (2009).Google Scholar
19. Sola, D., Peña, J.I.. Applied Surface Science 255 (2009) 53225328.Google Scholar