Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T01:37:59.906Z Has data issue: false hasContentIssue false

Formation of Doping Profiles in Float Zone Silicon by Helium Implantation and Plasma Hydrogenation

Published online by Cambridge University Press:  01 February 2011

Reinhart Job
Affiliation:
reinhart.job@fernuni-hagen.dereinhart_job@yahoo.de, University of Hagen, Mathematics and Computer Science, Hagen, Germany
Franz-Josef Niedernostheide
Affiliation:
franz-josef.niedernostheide@infineon.com, Infineon Technologies AG, München, Germany
Hans-Joachim Schulze
Affiliation:
hans-joachim.schulze@inifineon.com, Infineon Technologies AG, München, Germany
Holger Schulze
Affiliation:
holger.schulze@infineon.com, Infineon Technologies Austria AG, Villach, Austria
Get access

Abstract

By means of two-point-probe Spreading Resistance (SR) analyses, the formation and evolution of hydrogen-related and vacancy-related donor and acceptor states were studied in helium implanted and subsequently hydrogen plasma-treated n-type Float-Zone (FZ) silicon wafers. He-implantation was carried out at 3.75 MeV, applying fluences of 1×1014 cm-2 and 2×1013 cm-2. After 15-min post-implantation H-plasma exposures at substrate temperatures between 350 °C and 500 °C, distinct surplus doping profiles were observed in the subsurface layers of the treated FZ Si samples down to about 20 μm depth. Enhanced donor concentrations could be observed as well acceptor-like states, at least partially compensating for the initial n-type doping, so that even buried p-type layers can be created under appropriate process conditions. The nature of the defect complexes that were responsible for the observed doping profiles in the subsurface layer of the studied samples will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kozlov, A. A., Kozlovski, V. V., Semiconductors 35, 735 (2001).Google Scholar
2. Huang, Y. L., Simoen, E., Claeys, C., Rafi, J. M., Clauws, P., Job, R., Fahrner, W. R., Appl. Phys. Lett. 89, 031911 (2006).Google Scholar
3. Rafi, J. M., Simoen, E., Claeys, C., Huang, Y. L., Ulyashin, A. G., Job, R., Versluys, J., Clauws, P., Lozano, M., Campabadal, F., J. Electrochem. Soc. 152, G16 (2005).Google Scholar
4. Simoen, E., Claeys, C., Job, R., Ulyashin, A. G., Fahrner, W. R., De Gryse, O., Clauws, P., Appl. Phys. Lett. 81, 1842 (2002).Google Scholar
5. Simoen, E., Huang, Y., Ma, Y., Lauwaert, J., Clauws, P., Rafi, J., Ulyahin, A., Claeys, C., ECS Transactions 16 (no. 6), 129 (2008).Google Scholar
6. Job, R., Fahrner, W. R., Kazuchits, N. M., Ulyashin, A. G., Mater. Res. Soc. Symp. Proc. 513, 337 (1998).Google Scholar
7. Job, R., Ulyashin, A. G., Ma, Y., Fahrner, W. R., Simoen, E., Rafi, J. M., Claeys, C., Niedernostheide, F.-J., Schulze, H.-J., in High Purity Silicon VI, Editors: Claeys, C. L., Rai-Choudhury, P., Watanabe, M., Stallhofer, P., PV 2002-20, p. 141, The Electrochemical Society Proceedings Series, Pennington, NJ (2002).Google Scholar
8. Job, R., Ulyashin, A. G., Fahrner, W. R., Niedernostheide, F.-J., Schulze, H.-J., Simoen, E., Claeys, C. L., Tonelli, G., Proceedings of the XIth International Workshop on the Physics of Semiconductor Devices (IWPSD '2001), Editors: Kumar, V., Basu, P. K., p. 405, Allied, New Delhi (2002).Google Scholar
9. Job, R., Niedernostheide, F.-J., Schulze, H.-J., Schulze, H., ECS Transactions, 16 (no. 6), 151 (2008).Google Scholar
10. Coutinho, J., Torres, V. J. B., Jones, R., Öberg, S., Briddon, P. R., J. Phys.: Condens. Matter 15, 2809 (2003).Google Scholar
11. Tokuda, Y., Ito, A., Ohshima, H., Semicond. Sci. Technol. 13, 194 (1998).Google Scholar
12. Job, R., Düngen, W., Ma, Y., Horstmann, J. T., ECS Transactions 3 (no. 4), 417 (2006).Google Scholar
13. Hazdra, P., Komarnitskyy, V., IET Circuits, Devices and Systems 1, 321 (2007).Google Scholar
14. Job, R., Fahrner, W. R., Ulyashin, A. G., Ivanov, A. I., Palmetshofer, L., Appl. Phys. (A) 72, 325 (2001)Google Scholar
15. Murray, R., Physica B 170, 115 (1991).Google Scholar
16. Capaz, R. B., Assali, L. V. C., Kimmerling, L. C., Cho, K., Joannopoulos, J. D., Braz. J. Phys. 29, 611 (1999).Google Scholar
17. Markevich, V. P., Murin, L. I., Lindström, J. L., Ulyashin, A. G., Job, R., Fahrner, W. R., Raiko, V., J. Phys. C: Condens. Matter 12, 10145 (2000).Google Scholar
18. Shimura, F., Oxygen in Silicon, Academic Press, New York (1994).Google Scholar
19. Job, R., Ulyashin, A. G., Fahrner, W. R., Simoen, E., Claeys, C., Tonelli, G., Nucl. Instr. and Meth. in Phys. Res. B 186, 116 (2002).Google Scholar