Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T04:21:15.605Z Has data issue: false hasContentIssue false

The Formation and Evolution of InAs 3D Islands on GaAs(001) and a Comparative C-AFM and NC-AFM Study of InAs 3D Islands

Published online by Cambridge University Press:  15 February 2011

T. R. Ramachandran
Affiliation:
Department of Materials Science, University of Southern California, Los Angeles, CA 90089.
N. P. Kobayashi
Affiliation:
Department of Materials Science, University of Southern California, Los Angeles, CA 90089.
R. Heitz
Affiliation:
Department of Materials Science, University of Southern California, Los Angeles, CA 90089.
P. Chen
Affiliation:
Department of Materials Science, University of Southern California, Los Angeles, CA 90089.
A. Madhukar
Affiliation:
Department of Materials Science, University of Southern California, Los Angeles, CA 90089.
Get access

Abstract

The two-dimensional (2D) to three-dimensional (3D) morphology change in the highly strained growth of InAs on GaAs(001) is examined via in-situ, ultra-high vacuum (UHV) scanning tunneling microscopy (STM) and contact-mode atomic force microscopy (C-AFM). The formation of 3D InAs islands (˜2–4nm high) at an InAs delivery, θ˜1.57ML is found to be preceded by the appearance of small quasi-3D clusters (˜0.6–1.2nm high). The 2D to 3D transition is found to occur over a range of θ from ˜1.45ML to 1.74ML, with a varying and gradual mass transfer from 2D to 3D features with increasing θ. The InAs 3D islands are also examined in this study using non-contact AFM (NC-AFM) in order to assess the usefulness of this technique for imaging 3D features. Unlike the constancy observed in the C-AFM images, the NC-AFM images exhibit a marked imaging condition dependence. The variability observed in the NC-AFM images is qualitatively compared to the outcome of the simplest, force-gradient model of NC-AFM in order to extract a guideline for NC-AFM imaging of 3D features.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Guha, S., Madhukar, A., and Rajkumar, K. C., Appl. Phys. Lett. 57, 2110 (1990); D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
2. Xie, Q., et al., IEEE Photon. Technol. Lett. 8, 965 (1996); N. N. Ledentsov, et al., Solid State Electron. 40, 785 (1996).Google Scholar
3. Ghaisas, S. V. and Madhukar, A., Proc. SPIE 944, 16 (1988).Google Scholar
4. Priester, C. and Lannoo, M., Phys. Rev. Lett. 75, 93 (1995).Google Scholar
5. Knall, J. and Pethica, J. B., Surf. Sci. 265, 156 (1992).Google Scholar
6. Sunamura, H., et al., Appl. Phys. Lett. 66, 3024 (1995); P. Schittenhehnet al., Appl. Phys. Lett. 67, 1292 (1995).Google Scholar
7. Snyder, C. W., et al., Phys. Rev. Lett. 66, 3032 (1991).Google Scholar
8. Leonard, D., Pond, K., and Petroff, P. M., Phys. Rev. B 50, 11687 (1994).Google Scholar
9. Moison, J. M., et al., Appl. Phys. Lett. 64, 196 (1994); J. M. Gerard, et al., J. Cryst. Growth 150, 351 (1995).Google Scholar
10. Polimeni, A., etal., Phys. Rev. B 53, R4213 (1996).Google Scholar
11. Kobayashi, N. P., Ramachandran, T. R., Chen, P., and Madhukar, A., Appl. Phys. Lett. 68, 3299 (1996).Google Scholar
12. Ramachandran, T. R., et al., J. Cryst. Growth (in press).Google Scholar
13. Wiesendanger, R., Scanning Probe Microscopy and Spectroscopy (Cambridge University Press, Great Britain, 1994).Google Scholar
14. Albrecht, T. R., Grutter, P., Home, D., and Rugar, D., J. Appl. Phys. 69, 668 (1991).Google Scholar
15. Giessibl, F. J., Science 267, 68 (1995).Google Scholar
16. Israelachvili, J. N., Intermolecular and Surface Forces (Academic Press, San Diego, 1992).Google Scholar
17. Durig, U., and Zuger, O., Phys. Rev. B 50, 5008 (1994).Google Scholar