Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:22:18.765Z Has data issue: false hasContentIssue false

Flexible Polymer Atomic Switches using Ink-Jet Printing Technique

Published online by Cambridge University Press:  25 May 2012

Saumya R. Mohapatra
Affiliation:
International Center for Materials Nanoarchitectnics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
Tohru Tsuruoka
Affiliation:
International Center for Materials Nanoarchitectnics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
Tsuyoshi Hasegawa
Affiliation:
International Center for Materials Nanoarchitectnics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
Kazuya Terabe
Affiliation:
International Center for Materials Nanoarchitectnics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
Masakazu Aono
Affiliation:
International Center for Materials Nanoarchitectnics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
Get access

Abstract

Gapless-type atomic switches were fabricated on a flexible plastic substrate by printing ‘solid polymer electrolyte’ (SPE) layers using suitable ink and drop-on-demand ink-jet technique. High surface energy difference between Pt microelectrode patterned on the plastic substrate and the substrate itself, led to the successful printing of electrolytic solution on a bottom Pt electrodes. Bipolar resistive switching behavior was observed in Ag/SPE/Pt cross-point structures under electrical bias. The switching between ON and OFF states is attributed to the formation and dissolution of a metal filament between the electrodes. The cells also exhibited stable switching behavior under mechanical stress as performed by substrate bending. Switching characteristics measured under mechanical stress and without stress are matching well. The results demonstrate that the SPE-printed atomic switch has great potential for flexible switch/memory applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arora, P., and (John) Zhang, Z., Chem. Rev. 104, 4462 (2004).Google Scholar
2. Tarascon, J. M., and Armand, M., Nature 414, 359 (2001).Google Scholar
3. Mohapatra, S. R., Thakur, A. K., and Sakuma, T., J. Phys. Soc. Jpn. 79 (SUPPL. A), 169 (2010).Google Scholar
4. Mohapatra, S. R., Thakur, Awalendra K., and Chaudhary, R. N. P. J. Polym. Sci. Part B: Polym.Phys. 47, 60 (2009).Google Scholar
5. Liang, Y-H., Hung, C.-Y., Wang, C.-C., Chen, C.-Y., J. Power Sources 188, 261 (2009).Google Scholar
6. Karmakar, A. and Ghosh, A., Phys. Rev. E 84, 051802 (2011).Google Scholar
7. Nguyen, C. A., Argun, A. A., Hammond, P. T., Lu, X., and Lee, P. S., Chem. Mater. 23, 2142 (2011).Google Scholar
8. Sagar, A., Balasubramanian, K., Burghard, M., Kern, K., and Sordan, R., Appl. Phys. Lett. 99, 043307 (2011).Google Scholar
9. Ozel, T., Gaur, A., Rogers, J. A., and Shim, M., Nano Lett. 5, 905 (2005).Google Scholar
10. Wu, S., Tsuruoka, T., Terabe, K., Hasegawa, T., Hill, J. P., Ariga, K., and Aono, M., Adv. Func. Mater. 21, 93 (2011).Google Scholar
11. Hasegawa, T., Terabe, K., Sakamoto, T., and Aono, M., MRS Bull. 34, 929 (2009).Google Scholar
12. de Gans, B.-J., Duineveld, P. C., and Schubert, U. S., Adv. Mater. 16, 203 (2004).Google Scholar
13. Shin, K-Y., Lee, S-H, and Oh, J. H., J. Micromech. Microeng. 21, 045012 (2011)Google Scholar
14. Galeev, T. K., Bulgakov, N. N., Savelieva, G. A., and Popova, N. M., React. Kinet. Catal. Lett. 14, 61 (1980).Google Scholar
15. Gonzalez, E. II, Barankin, M. D., Guschl, P. C., Hicks, R. F., Gonzalez, E. II, Barankin, M. D., Guschl, P. C., and Hicks, R. F., Langmuir 24, 12636 (2008).Google Scholar
16. Lenz, P. and Lipowsky, R., Phys. Rev. Lett. 80, 1920 (1998).Google Scholar
17. Darhuber, A. A., Troian, S. M., Miller, S. M., and Wagner, S., J. Appl. Phys. 87, 7768 (2000).Google Scholar
18. Fan, L., Nan, C-W., and Li, M., Chem. Phys. Lett. 369, 698 (2003).Google Scholar