Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T15:26:19.461Z Has data issue: false hasContentIssue false

First-principles Investigations of Point Defect Behavior and Elastic Properties of TiNi Based Alloys

Published online by Cambridge University Press:  01 February 2011

Jian-min Lu
Affiliation:
jmlv@imr.ac.cn, Institute of Metal Research CAS, Shenyang, China
Qing-miao Hu
Affiliation:
qmhu@imr.ac.cn, Institute of Metal Research CAS, Shenyang, China
Rui Yang
Affiliation:
ryang@imr.ac.cn, Institute of Metal Research CAS, China
Get access

Abstract

First-principles calculations by the use of a plane-wave pseudopotential method are performed to investigate intrinsic point defect behavior in TiNi. The results show that TiNi is an antisite type intermetallic compound. The calculated interaction energies between the point defects demonstrate that Ti antisites are attractive to each other whereas Ni antisites are mutually repulsive. The attraction between Ti antisites indicates that excess Ti in TiNi may agglomerate so that a Ti-rich phase can easily precipitate. The repulsion between Ni antisites implies that the excess Ni is of certain solubility in TiNi. This result explains well the asymmetric feature of TiNi field on the binary phase diagram. In order to understand the correlation between the composition dependent elastic modulus and martensitic transformation (MT) temperature, the elastic moduli critical to MT, i.e., c′ and c44, are calculated as a function of the composition of the off-stoichiometric TiNi and a series of ternary TiNi-X alloys, by the use of exact muffin-tin orbital method in combination with coherent potential approximation. It turns out that, generally speaking, the early transition metal (TM) alloying elements in the periodic table increase c′ but decrease c44; the middle ones increase both c′ and c44, whereas the late ones decrease c′ but increase c44. An examination of the theoretical composition dependent elastic modulus and the experimental MT temperature shows that the MT temperature is more sensitive to the variation of c44 than to that of c′.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Otsuka, K. and Ren, X., Prog. Mater. Sci. 50, 511 (2005).Google Scholar
2. Kartha, S., Krumhansl, J. A., Sethna, J. P. and Wickham, L. K., Phys. Rev. B 52, 803 (1995).Google Scholar
3. Ren, X. and Otsuka, K., Scripta Metall. 38, 1669 (1998).Google Scholar
4. Ren, X., Taniwaki, K., Otsuka, K., et al. Philos. Mag. A 79, 31 (1999).Google Scholar
5. Ren, X. and Otsuka, K., Mater. Sci. Forum 327-328, 429 (2000).Google Scholar
6. Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).Google Scholar
7. Mayer, J., Elsasser, C. and Fahnle, M., Phys. Status Solidi B 191, 283 (1995).Google Scholar
8. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. and Joannopoulus, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
9. Segall, M. D., Lindan, P. L. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J. and Payne, M. C., J. Phys.: Condens. Matter 14, 2717 (2002).Google Scholar
10. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
11. Vitos, L., Abrikosov, I. A. and Johansson, B., Phys. Rev. Lett. 87, 156401 (2001).Google Scholar
12. Soven, S., Phys. Rev. 156, 809 (1967).Google Scholar
13. Györffy, B. L., Phys. Rev. B 5, 2382 (1972).Google Scholar
14. Ye, Y. Y., Chan, C. T. and Ho, K. M., Phys. Rev. B 56, 3678 (1997).Google Scholar
15. Huang, X., Bungaro, C., Godlevsky, V. and Rabe, K. M., Phys. Rev. B 65, 014108 (2001).Google Scholar
16. Mercier, O., Melton, K. N., Gremaud, G. and Hagi, J., J. Appl. Phys. 51, 1833 (1980).Google Scholar
17. Khachin, V. N., Muslov, S. A., Pushin, V. G. and Chumlyakov, Y. I., Sov. Phys. Dokl. 32, 606 (1980).Google Scholar
18. Brill, T. M., Mittlebach, S., Assmus, W., Mullner, M. and Luthi, B., J. Phys.: Condens. Matter 3, 9621 (1991).Google Scholar
19. Hanlon, J. E., Butler, S. R. and Wasilewski, R. J., Trans. Metall. Soc. AIME 239, 1323 (1967).Google Scholar
20. Wasilewski, R. J., Butler, S. R., Hanlon, J. E. and Worden, D., Metall. Trans. 2, 229 (1971).Google Scholar
21. Lu, J. M., Hu, Q. M., Wang, L., Li, Y. J., Xu, D. S. and Yang, R., Phys. Rev. B 75, 094108 (2007).Google Scholar
22. Lu, J. M., Hu, Q. M. and Yang, R., Acta Mater. 56, 4913 (2008).Google Scholar
23. Hu, Q. M., Yang, R., Lu, J. M., Wang, L., Johansson, B. and Vitos, L., Phys. Rev. B 76, 224201 (2007).Google Scholar
24. Echelmeyer, K. H., Script Metall. 10, 667 (1976).Google Scholar
25. Edmonds, K. R. and Hwang, C. M., Script Metall. 20, 733 (1986).Google Scholar
26. Xu, H. B., Jiang, C. B., Gong, S. K. and Feng, G., Mater. Sci. Eng. A 281, 234 (2000).Google Scholar
27. Hosoda, H., Hanada, S., Inoue, K., Fukui, T., Mishima, Y. and Suzuki, T., Intermetallics 6, 291 (1998).Google Scholar
28. Lin, H. C., Lin, K. M., Chang, S. K. and Lin, C. S., J. Alloy Comp. 284, 213 (1999).Google Scholar
29. Nam, T. H., Saburi, T. and Shimizu, K., Mater. Trans. JIM 31, 959 (1990).Google Scholar
30. Kornilov, I. I., Kachur, Y. V. and Belousov, O. K., Fizika. Metall. 32, 420 (1971).Google Scholar
31. Mayazaki, S., Otsuka, K. and Suzuki, Y., Scr. Metall. 15, 287 (1981).Google Scholar
32. Melton, K.N. and Mercier, O., Acta Metall. 29, 393 (1981).Google Scholar
33. Mayazaki, S. and Otsuka, K., Metall. Trans. 17, 53 (1986).Google Scholar
34. Nishida, M., Wayman, C.M. and Honma, T., Metall. Trans. A 17, 1505 (1986).Google Scholar
35. Wu, S. K. and Wayman, C. M., Script Metall. 21, 83 (1987); Metallography 20, 359 (1987).Google Scholar
36. Honsoda, H., Tsuji, M., Mimura, M., Takahashi, Y., Wakashima, K. and Ymabe-Mitarai, Y., Mat. Res. Soc. Symp. Proc. 753, BB5.51.1 (2003).Google Scholar
37. Feng, Z. W., Gao, B. D., Wang, J. B., Qian, D. F. and Liu, Y. X., Mater. Sci. Forum 394-395, 365 (2002).Google Scholar
38. Hsieh, S. F. and Wu, S. K., Mater. Charact. 151, 41 (1998).Google Scholar