Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T14:21:05.513Z Has data issue: false hasContentIssue false

First-Principles Angle-Resolved Photoemission Intensity Calculations in Y Ba2Cu3O7

Published online by Cambridge University Press:  25 February 2011

M. Lindroos
Affiliation:
Physics Department, Northeastern University, Boston, Massachusetts 02115 Physics Department, Tampere University of Technology, Tampere, Finland
A. Bansil
Affiliation:
Physics Department, Northeastern University, Boston, Massachusetts 02115
J. C. Campuzano
Affiliation:
Materials Science Division, Argonne National Laboratory, Illinois 60439 Dept. of Physics, University of Illinois at Chicago, Illinois 60860
Get access

Abstract

We discuss the application of the multiple scattering theory to obtain first-principles predictions of angle-resolved photoemission intensities (ARPES) in the high-Tc superconductors. In this connection, we have generalized and implemented the ‘one-step’ photoemission approach to treat systems with an arbitrary number of atoms in the layer unit cell. We illustrate the methodology with results for the r-S symmetry direction for the (001)-surface of orthorhombic YBa2Cu3O7. Our computations give insight into the effects of surface termination, and of polarization of incident light on photoemission intensities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Cardona, M., Ley, L. (eds.): Photoemission in Solids I and II, Topics Appl. Phys. 26 and 27, Springer, Berlin, Heidelberg 1978.Google Scholar
[2] Lindroos, M., Physica Scripta 25(1982)788.CrossRefGoogle Scholar
[3] Pendry, J.B., Surface Science 57(1976)679.CrossRefGoogle Scholar
[4] Feuerbacher, B., Fitton, B., and Willis, R. F.: Photoemission and the Electronic Properties of Surfaces, John Wiley and Sons, New York, 1978.Google Scholar
[5] Durham, P.J., in The Electronic Structure of Complex Systems, edited by Phariseau, P. and Temmerman, W.M., Plenum, New York, 1984.Google Scholar
[6] Lindroos, M., Hofmann, P., Menzel, D., Phys. Rev. B33(1986)6798.CrossRefGoogle Scholar
[7] Dessau, D. S. et al. Phys. Rev. Letters 66(1991)2160.CrossRefGoogle Scholar
[8] Liu, L.Z., Anderson, R.O. and Allen, J.W., J. Chem. Phys. Solids (Dec. 1991).Google Scholar
[9] Larsson, C.G., Surface Science 152/153(1985)213.CrossRefGoogle Scholar
[10] Hopkinson, J.F.L. et al. , Computer Phys. Commun. 19(1981)69.CrossRefGoogle Scholar
[11] Courths, R., Schulz, H. and Hfifner, S., Solid State Comm. 29(1979)667.CrossRefGoogle Scholar
[12] Caroli, C. et al. Phys. Rev. B8(1973)4552.CrossRefGoogle Scholar
[13] Lindberg, P.A., Johansson, L.I. and Christensen, A.N., Surface Science 192(1987)353.CrossRefGoogle Scholar
[14] Pendry, J.B., Low Energy Electron Diffraction, Academic Press, London, 1974.Google Scholar
[15] Beno, M.A. et al. , Appl. Phys. Lett. 51(1987)57.CrossRefGoogle Scholar
[16] Bansil, A. and Kaprzyk, S., Phys. Rev. B43(1991)10335. S. Kaprzyk and A. Bansil, Phys. Rev. B42(1990)7358.CrossRefGoogle Scholar
[17] Pickett, W.A., Rev. Mod. Phys. 61(1989)433.CrossRefGoogle Scholar
[18] Campuzano, J.C. et al. , J. Chem. Phys. Solids (Dec. 1991).Google Scholar
[19] Mante, G. et al. , submitted to Phys. Rev.Google Scholar
[20] Liu, R. et al. , submitted to Phys. Rev.Google Scholar
[21] Veal, B., private communication.Google Scholar
[22] Feibelman, P.J., Surface Science 46(1974)558.CrossRefGoogle Scholar