Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T15:14:15.614Z Has data issue: false hasContentIssue false

First Principles Study of Metal/Bi2Te3 Interfaces: Implications to Improve Contact Resistance

Published online by Cambridge University Press:  31 January 2011

Ka Xiong
Affiliation:
kaxiong0124@yahoo.com, University of Texas at Dallas, Materials Science and Engineering, RL10, 800 West Campbell Road, Richardson, Texas, 75080, United States
Weichao Wang
Affiliation:
wcw3279@gmail.com, University of Texas at Dallas, Richardson, Texas, United States
Husam N Alshareef
Affiliation:
alshareef@utdalls.edi, University of Texas at Dallas, Richardson, Texas, United States
Rahul P Gupta
Affiliation:
rpg032000@utdallas.edu, University of Texas at Dallas, Richardson, Texas, United States
John B White
Affiliation:
JWHITE@marlow.com, Marlow Industries, Dallas, Texas, United States
Bruce E Gnade
Affiliation:
beg031000@utdallas.edu, University of Texas at Dallas, Richardson, Texas, United States
Kyeongjae Cho
Affiliation:
kjcho@utdallas.edu, University of Texas at Dallas, Richardson, Texas, United States
Get access

Abstract

We investigate the band offsets and stability for Ni/Bi2Te3 and Co/Bi2Te3 interfaces by first principles calculations. It is found that the surface termination strongly affects the band offsets. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energies for Co/Bi2Te3 interfaces are much lower than those of Ni/Bi2Te3 interfaces. Our calculations are consistent with the experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R., Ren, Z., Adv. Mater. 19, 1043, (2007).Google Scholar
2 Snyder, G. J. and Toberer, E. S, Nat. Mater. 7, 105, (2008).Google Scholar
3 Semenyuk, V., Proc 22nd Intl. Conf. on Thermoelectrics, pp631, Montpellier, France (2003).Google Scholar
4 Nolas, G. S., Sharp, J. and Goldsmid, H. J., “Thermoelectrics - Basic Principles and New Materials Developments”, Springer (2001).Google Scholar
5 Fleurial, J.-P., Proc. 18th Intl. Conf. on Thermoelectrics, pp294, Baltimore, USA (1999).Google Scholar
6 Anatychuk, L.I., Proc. 15th Intl. Conf. on Thermoelectrics, pp 279, Pasadena, USA (1996)Google Scholar
7 Semenyuk, V., Proc 20th Intl. Conf. on Thermoelectrics, pp391, Beijing, CHINA (2001).Google Scholar
8 Iyore, O. D., Lee, T.H., Gupta, R. P., White, J. B., Alshareef, H. N., Kim, M. J. and Gnade, B. E., Surf. Interface Anal. (2009), in press.Google Scholar
9 Lan, Y. C., Wang, D. Z., Chen, G. and Ren, Z. F., Appl. Phys. Lett. 92, 101910 (2008).Google Scholar
10We have used first principles method to study similar metal/oxide interface band offset problems: Magyari-Kope, B., Park, S., Colombo, L., Y, Nishi, and Cho, K., J. Appl. Phys. 105, 013711 (2009).Google Scholar
11 Kresse, G. and Furthmuller, J., Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).Google Scholar
12 Xiong, K., Delugas, P., Hooker, J., Fiorentini, V., Robertson, J., Appl. Phys. Lett. 92, 113504 (2008).Google Scholar
13 Gorbachuk, N. P., and Sidorko, V. R., Powder Metallur. Metal Ceram., 43, 284 (2004).Google Scholar
14 Goldsmid, H. J., Thermoelectric Refrigeration (Plenum, New York, 1964).Google Scholar
15 Huang, B.-L. and Kaviany, M., Phys. Rev. B 77, 125209 (2008).Google Scholar
16 Scheidemantel, T. J., Ambrosch-Draxl, C., Thonhauser, T., V, J..Badding, , and Sofo, J. O., Phys. Rev. B 68, 125210 (2003).Google Scholar
17 Youn, S. J. and Freeman, A. J., Phys. Rev. B 63, 085112 (2001).Google Scholar
18 Larson, P., Phys. Rev. B 68, 155121 (2003).Google Scholar
19 Kim, M., Freeman, A. J., and Geller, C. B., Phys. Rev. B 72, 035205 (2005).Google Scholar