Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T00:44:06.375Z Has data issue: false hasContentIssue false

A first principles investigation of the electronic structure of actinide oxides

Published online by Cambridge University Press:  01 February 2011

Leon Petit
Affiliation:
leon.petit@stfc.ac.uk, Daresbury Laboratory, Computational Science and Engineering, Daresbury, United Kingdom
Axel Svane
Affiliation:
svane@phys.au.dk, Aarhus University, Department of Physics and Astronomy, Aarhus, Denmark
Zdzislawa Szotek
Affiliation:
zdzislawa.szotek@stfc.ac.uk, Daresbury Laboratory, Computational Science and Engineering, Daresbury, United Kingdom
Walter Temmerman
Affiliation:
walter.temmerman@stfc.ac.uk, Daresbury Laboratory, Computational Science and Engineering, Daresbury, United Kingdom
Malcolm Stocks
Affiliation:
stocksgm@ornl.gov, Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee, United States
Get access

Abstract

The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations using the self-interaction corrected local spin-density approximation. Our study reveals a strong link between preferred oxidation number and degree of localization. The ionic nature of the actinide oxides emerges from the fact that those oxides where the ground state is calculated to be metallic do not exist in nature, as the corresponding delocalized f-states favour the accommodation of additional O atoms into the crystal lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Johansson, B. and Skriver, H. J. Magn. Magn. Mater. 29, 217 (1982).Google Scholar
2 Svane, A. Petit, L. Szotek, Z. and Temmerman, W. M. Phys. Rev. B 76, 115116 (2007).Google Scholar
3 Zunger, A. Perdew, J. P. and Oliver, G. L. Solid State Commun. 34, 933 (1980).Google Scholar
4 Svane, A. Phys. Rev. B 53, 4275 (1996).Google Scholar
5 Temmerman, W. M. Svane, A. Szotek, Z. Winter, H. and Beiden, S. V. Lecture Notes in Physics, edited by Dreyssé, M., (Springer Verlag, Berlin, 2000), vol. 535, p. 286.Google Scholar
6 Temmerman, W. M. Svane, A. Szotek, Z. Strange, P. Petit, L. and Lüders, M., Phase Transitions 80, 415 (2007).Google Scholar
7 Petit, L. Svane, A. Szotek, Z. Temmerman, W. M. and Stocks, G. M. Phys. Rev. B 81, 045108 (2010).Google Scholar
8 Moore, K. T. Laan, G. van der, Haire, R. G. Wall, M. A. and Schwartz, A. J. Phys. Rev. B 73, 033109 (2006).Google Scholar
9 Soderholm, L. J. Less-Common Met. 133, 77 (1987).Google Scholar
10 Prodan, I. D. Scuseria, G. E. and Martin, R. L. Phys. Rev. B 76, 033101 (2007).Google Scholar
11 Baybarz, R. D. Haire, R. G. and Fahey, J. A. J. Inorg. Nucl. Chem. 34, 557 (1972).Google Scholar