Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T14:24:36.307Z Has data issue: false hasContentIssue false

First Principles Calculation of Residual Resistivity

Published online by Cambridge University Press:  25 February 2011

D. M. Nicholson
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6114
R. H. Brown
Affiliation:
Department of Physics, Luther College, Decorah, IA 52101
W. H. Butler
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6114
H. Yang
Affiliation:
Department of Physics, Indiana University, Bloomington, IN 47405
J. W. Swihart
Affiliation:
Department of Physics, Indiana University, Bloomington, IN 47405
P. B. Allen
Affiliation:
Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3800
A. Mehta
Affiliation:
Department of Physics, Brandeis University, Waltham, MA 02254
L. M. Schwartz
Affiliation:
Schlumberger-Doll Research, P.O. Box 307, Ridgefield, CT 06877
Get access

Abstract

The list of physical properties which are important in the design of materials and which are routinely calculated from first principles within the local density approximation to density functional theory is continually growing. In this paper we discuss the application of multiple scattering theory to the calculation of the residual resistivity of disordered alloys. Progress has been made on two fronts. First, the coherent potential approximation for the resistivity, which sums to all orders a limited set of multiple scattering diagrams, has given resistivities in agreement with experiment for alloys where the site occupation is roughly random. Second, the linearized KKR was used to evaluate the Kubo formula for several large configurations of atoms and obtain the resistivity with all multiple scattering paths included. This method is not limited to random alloys, but can be applied to short range ordered and amorphous alloys provided the resistivity is high enough to limit the mean free path to a single unit cell.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kubo, R., J. Phys. Soc. Jpn. 12, 570 (1957).CrossRefGoogle Scholar
2. Butler, W. H., Swihart, J. S., Stocks, G. M., Nicholson, D. M., and Ward, R. C., Phys. Rev. Lett. 57, 1181–84 (1986).Google Scholar
3. Brown, R. H., Allen, P. B., Nicholson, D. M., and Butler, W. H., Phys. Rev. Lett. 62, 661 (1989).Google Scholar
4. Yang, H., Thesis (1991) unpublished.Google Scholar
5. , Chen, Phys. Rev. Lett.Google Scholar
6. Johnson, D. D., Nicholson, D. M., Pinski, F. J., Gyorffy, B. L., and Stocks, G. M., Phys. Rev. Lett. 56, 2088 (1986).Google Scholar
7. Cargill, G. S. III, J. Appl. Phys. B 23, 315 (1976); J. P. Carini, S.R. Nagel, L. K. Varga, and T. Schmidt, Phys. Rev. B 27, 7589 (1983).Google Scholar
8. Aryainajud, S., Ph.D. thesis, Indiana University, Bloomington, Indiana, (1983) unpublished; N. E. Alekseevskii, A. V. Mitin, and N. M. Matveeva, Zh. Eksp. Teor. Fiz. 69, 2124 (1975) [Soy. Phy. JETP 42,1080 (1976)].Google Scholar
9. Lei, T. S., Vasudevan, K., and Stansbury, E. E., Mat. Res. Soc. Symp. Proc. Vol 39, 164 (1985).Google Scholar
10. Butler, W. H., Phys. Rev. B 31, 3260 (1985); L. M. Schwartz, Phys. Rev. B 24, 1091 (1981).CrossRefGoogle Scholar
11. Roth, L. M., Phys. Rev. B 9, 2476 (1974); D. M. Nicholson and L. M. Schwartz, Phys. Rev. Lett. 49, 1050 (1982).Google Scholar
12. Kirkwood, J. G., Maun, E. K., Adler, B. J., J. Chem. Phys. 18, 1040 (1950).CrossRefGoogle Scholar
13. Mooij, J. H., Phys. Status Solidi A 17, 521 (1973).CrossRefGoogle Scholar
14. Tsuei, C. C., Phys. Rev. Lett. 57, 1943 (1986).Google Scholar
15. Jonson, M. and Girvin, S. M., Phys. Rev. Lett. 43, 1447 (1979); S. M. Girvin and M. Jonson, Phys. Rev. Lett. 57, 1181 (1986).CrossRefGoogle Scholar
16. Lamparter, P. and Steeb, S., Proceedings of the 5th International Conference of Rapidly Quenched Metals (1984).Google Scholar
17. Yang, H., Ph.D. thesis, Indiana University, Bloomington, Indiana, (1990) unpublished.Google Scholar
18. Thomas, H., Z. Physik, 129 (1951).CrossRefGoogle Scholar
19. Chakravarti, B., Starke, E. A. Jr., Sparks, C. J., and Williams, R. O., J. Phys. Chem. 35, 2017 (1974).Google Scholar
20. Nicholson, D. M., Stocks, G. M., Pinski, F. J., Gonis, A., Gyorffy, B. L., and Johnson, D. D., Bull. Am. Phys. Soc. 33, 529 (1988); D. M. Nicholson, unpublished.Google Scholar
21. Schonfeld, B., Reinhard, L., Kostorz, G., Buhrer, W., Phys. Stat. Sol. (b) 148, 457 (1988).CrossRefGoogle Scholar