Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:55:16.503Z Has data issue: false hasContentIssue false

Finite-temperature Anisotropic Elastic Properties of Ni-Mn-In Magnetic Shape Memory Alloy

Published online by Cambridge University Press:  31 January 2011

Kristen Smith Williams
Affiliation:
kswilliams@tamu.edutigrgal@yahoo.com, Texas A&M University, College Station, Texas, United States
Tahir Cagin
Affiliation:
kswilliams@tamu.edutigrgal@yahoo.com, Texas A&M University, College Station, Texas, United States
Get access

Abstract

Designing magnetic shape memory materials with practicable engineering applications requires a thorough understanding of their electronic, magnetic, and mechanical properties. Experimental and computational studies on such materials provide differing perspectives on the same problems, with theoretical approaches offering fundamental insight into complex experimental phenomena. Many recent computational approaches have focused on first-principles calculations, all of which have been successful in reproducing ground-state structures and properties such as lattice parameters, magnetic moments, electronic density of states, and phonon dispersion curves. With all of these successes, however, such methods fail to include the effects of finite temperatures, effects which are critical in understanding how these properties couple to the experimentally-observed martensitic transformation. To this end, we apply the quasi-harmonic theory of lattice dynamics to predict the finite-temperature mechanical properties of Ni-Mn-In magnetic shape memory alloy. We employ first-principles calculations in which we include vibrational contributions to the free energy. By constructing a free energy surface in volume/temperature space, we are able to evaluate key thermodynamic properties such as entropy, enthalpy, and specific heat. We further report the elastic constants for the austenite and martensite phases and evaluate their role as a driving force for martensitic transformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Murray, S. J., Marioni, M., Allen, S. M., O'Handley, R. C. and Lograsso, T. A., Applied Physics Letters 77 (6), 886888 (2000).Google Scholar
2 Krenke, T., Duman, E., Acet, M., Wassermann, E. F., Moya, X., Manosa, L., Planes, A., Suard, E. and Ouladdiaf, B., Physical Review B (Condensed Matter and Materials Physics) 75 (10), 104414104416 (2007).Google Scholar
3 Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K. and Oikawa, K., Applied Physics Letters 85 (19), 43584360 (2004).Google Scholar
4 Planes, A., Manosa, L. and Acet, M., Journal of Physics: Condensed Matter 21 (23), 233201 (2009).Google Scholar
5 Han, Z. D., Wang, D. H., Zhang, C. L., Tang, S. L., Gu, B. X. and Du, Y. W., Applied Physics Letters 89 (18), 182507–182503 (2006).Google Scholar
6 Sharma, V. K., Chattopadhyay, M. K. and Roy, S. B., Journal of Physics D: Applied Physics 40 (7), 18691873 (2007).Google Scholar
7 Dubenko, I., Khan, M., Pathak, A. K., Gautam, B. R., Stadler, S. and Ali, N., Journal of Magnetism and Magnetic Materials 321 (7), 754757 (2009).Google Scholar
8 Yu, S. Y., Liu, Z. H., Liu, G. D., Chen, J. L., Cao, Z. X., Wu, G. H., Zhang, B. and Zhang, X. X., Applied Physics Letters 89 (16), 162503–162503 (2006).Google Scholar
9 Sharma, V. K., Chattopadhyay, M. K., Shaeb, K. H. B., Chouhan, A. and Roy, S. B., Applied Physics Letters 89 (22), 222509–222503 (2006).Google Scholar
10 Vleck, J. H. Van, Reviews of Modern Physics 34 (4), 681 (1962).Google Scholar
11 Godlevsky, V. V. and Rabe, K. M., Physical Review B 63 (13), 134407 (2001).Google Scholar
12 Zayak, A. T., Entel, P., Rabe, K. M., Adeagbo, W. A. and Acet, M., Physical Review B 72 (5), 054113 (2005).Google Scholar
13 Enkovaara, J., Ayuela, A., Nordstrom, L. and Nieminen, R. M., Journal of Applied Physics 91 (10), 77987800 (2002).Google Scholar
14 Uijttewaal, M. A., Hickel, T., Neugebauer, J., Gruner, M. E. and Entel, P., Physical Review Letters 102 (3), 035702035704 (2009).Google Scholar
15 Kresse, G. and Furthmuller, J., Physical Review B 54, 11169 (1996).Google Scholar
16 Blochl, P. E., Physical Review B 50, 17953 (1994).Google Scholar
17 Perdew, J. P., Burke, K. and Ernzerhof, M., Physical Review Letters 77, 3865 (1996).Google Scholar
18 Walle, A. van de and Ceder, G., Reviews of Modern Physics 74, 11 (2002).Google Scholar
19 Kart, S. Ö., Uludogan, M., Karaman, I. and Çagin, T., physica status solidi (a) 205 (5), 10261035 (2008).Google Scholar