Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T12:02:44.794Z Has data issue: false hasContentIssue false

The Fine Structure of the Mn Distribution in ZnO Layers Deposited by Magnetron Sputtering for Spintronic Application

Published online by Cambridge University Press:  01 February 2011

Morad Abouzaid
Affiliation:
morad.abouzaid@ensicaen.fr, ENSCAEN, SIFCOM, 6, Bd Marechal Juin, Caen, 14050, France
Pierre Ruterana
Affiliation:
pierre.ruterana@ensicaen.fr, ENSCAEN, SICOM, 6, Bd Marechal Juin, Caen, 14050, France, 33231452653, 33231452660
Get access

Abstract

In this work, we carry out structural analysis of ferromagnetic Mn-doped ZnO thin films deposited by radio frequency magnetron sputtering, using transmission electron microscopy (TEM) and high resolution x-ray diffraction. On top of sapphire (0001) substrates, Mn rich precipitates and an interface reaction layer are observed following the deposition of Zn(Mn)O layers above 500°C. The crystalline quality of ZnO layers deposited by magnetron sputtering is highly improved at 500°C as well as the measured ferromagnetic response.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
[2] Lawes, G., Risbud, A. S., Ramirez, A. P., and Seshadri, Ram, Phys. Rev. B 71, 045201 (2005).Google Scholar
[3] Venkatesan, M., Fitzgerald, C. B., Lunney, J. G., and Coey, J. M. D., Phys. Rev. Lett. 93, 177206 (2004).Google Scholar
[3] Jung, S. W., An, S.-J., Yi, G.-C., Jung, C. U., Lee, S.-I., and Cho, S., Appl. Phys. Lett. 80, 4561 (2002).Google Scholar
[5 ]Norton, D. P., Pearton, S. J., Hebard, A. F., Theodoropoulou, N., Boatner, L. A., and Wilson, R. G., Appl. Phys. Lett. 82, 239 (2003).Google Scholar
[6] Lim, S., Jeong, M., Ham, M., and Myoung, J., Jpn. J. Appl. Phys., Part 2 43, L280 (2004).Google Scholar
[7] Pearton, S.J., Abernathy, C.R., Norton, D.P., Hebard, A.F., Park, Y.D., Boatner, L.A., Budai, J.D., Mat. Sci. Eng. R 40 137(2003)Google Scholar
[8] Liu, C., Yun, F., Xiao, B., Cho, S.J., Moon, Y. T., Morkoç, H., Abouzaid, M., Ruterana, P., Yu, K. M. and Walukiewicz, W., J. App. Phys 97, 126107 (2005)Google Scholar
[9] Li, A. P., Shen, J., Thompson, J. R. and Weitering, H. H., Appl. Phys. Lett. 86, 152507 (2005).Google Scholar
[10] Pinto, N. et al. , Phys. Rev. B 72, 165203 (2005).Google Scholar
[11] Jamet, M., Barski, A., Devillers, T., Poydenot, V., Dujardin, R., Guillemaud, P. Bayle, Rothman, J., Bellet-Amalric, E., Cibert, J., Mattana, R., Tatarenko, S., Nature Materials 5, 653 (2006).Google Scholar
[12] Abouzaid, M., Ruterana, P., Liu, C., and Morkoç, H., J. Appl. Phys. 99, 113515 (2006)Google Scholar
[13] Abouzaid, M., Ruterana, P., Liu, C., and Morkoç, H., Physica status solidi (a) 204, 99(2007)Google Scholar
[14.] Katayama, H.-Yoshida Physica status sol (a)204, 15(2007)Google Scholar