Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T01:51:14.010Z Has data issue: false hasContentIssue false

Ferroelectric Random Access Memory as a Non-Volatile Cache Solution in a Multimedia Storage System

Published online by Cambridge University Press:  01 February 2011

Dong Jin Jung
Affiliation:
djjung@samsung.comdjun01@gmail.com, Samsung Electronics Co. LTD., Memory Business Division, Hwasung, Korea, Republic of
Kinam Kim
Affiliation:
kn_kim@samsung.com, Samsung Electronics Co. LTD.,, Memory Business Division, Hwasung, Korea, Republic of
Get access

Abstract

We demonstrate that ferroelectric memory is very eligible to become a non-volatile cache solution, in particular, in a multimedia storage system such as solid-state disk. It could provide benefits both of performance and of reliability. In performance, a FRAM cache allows us to rid overhead of power-off recovery. Random WRITE performance has been improved by 250%. In assertion of endurance, we investigate acceleration factors to evaluate cycle-to-failure of the ferroelectric memory both in device-level and in capacitor-level. What has been found is that ferroelectric memory cells have 6.0×1014 of the cycle-to-failure at the operational condition of 85 o C and 2.0V. This cycle-to-failure is well above lifetime READ/WRITE cycles of 9.5×1013 in such system. From 2-dimensional stress simulation, it has also been concluded that the number of dummy cells plays a critical role in qualifying the high temperature life tests.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jung, D. J., Ahn, W. S., Hong, Y. K., Kim, H. H., Kang, Y. M., Kang, J. Y., Lee, E. S., Ko, H. K., Kim, S. Y., Jung, W. W., Kim, J. H., Kang, S. K., Jung, J. Y., Kim, H. S., Choi, D. Y., Lee, S. Y., Wei, K.H.A.C., and Jeong, H. S., Symp. on VLSI Tech. Dig., pp.102103 (2008).Google Scholar
2. Kang, Y. M., Joo, H. J., Park, J. H., Kang, S. K., Kim, J-H., Oh, S. G., Kim, H. S., Kang, J. Y., Jung, J. Y., Choi, D. Y., Lee, E. S., Lee, S. Y., Jeong, H. S., and Kim, Kinam, Symp. on VLSI Tech. Dig., pp.152153, (2006).Google Scholar
3. Kim, J.-H., Kang, Y.M., Park, J. H., Joo, H. J., Kang, S. K., Choi, D. Y., Rhie, H. S., Koo, B. J., Lee, S. Y., Jeong, H. S., and Kim., Kinam, IEDM Tech. Dig., pp. 889892 (2005).Google Scholar
4. Kim, J.-H., Jung, D. J., Kim, H. H., Hong, Y. K., Lee, E. S., Kim, S. Y., Jung, J. Y., Koh, H. K., Choi, D. Y., Kang, S. K., Kim, H., Jung, W. W., Kang, J. Y., Kang, Y. M., Lee, S. Y. and Jeong, H. S., Extended Abstract in 40th International Conference on Solid-State Devices and Materials, Tsukuba, Japan, pp. 11561157 (2008).Google Scholar