Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:29:22.733Z Has data issue: false hasContentIssue false

Fermi Level Stabilization in Semiconductors: Implications for Implant Activation Efficiency

Published online by Cambridge University Press:  26 February 2011

W. Walukiewicz*
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720
Get access

Abstract

We propose the existence of a Fermi level stabilization energy in III-V semiconductors which provides a reference level for the electronic part of defect annihilation energies. It is shown that the position of the stabilization energy with respect to the band edges determines the maximum free carrier concentration which can be obtained through doping. The proposed model accounts for previously unexplained trends in implant activation efficiency in III-V semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sette, F., Pearton, S.J., Poate, J.M., and Rowe, J.E., Nucl. Instrum. Methods B19/20, 408 (1987).Google Scholar
2.Galavanov, V.U., Metreveli, S.G., Siukaev, N.V. and Staroseltsova, S.P., Sov. Phys. Semicon. 3, 94 (1969).Google Scholar
3.Maguire, J., Murray, R., Newman, R.C., Beall, R.B., and Harris, J.J., Appl. Phys. Lett. 50, 516 (1987).Google Scholar
4.Mandel, G., Phys. Rev. 134, A1073 (1964).Google Scholar
5.Donnelly, J.P., Nucl. Instrum. Methods 182/183, 553 (1981).Google Scholar
6.Walukiewicz, W., J. Vac. Sci. Technol. B5, 1062 (1987).Google Scholar
7.Walukiewicz, W., Phys. Rev. B15 (to be published).Google Scholar
8.Bauer, R.S. and Margaritondo, G., Phys. Today 40 (1), 27 (1987).Google Scholar
9.Baraff, G.A. and Schlüter, M.S., Phys. Rev. Lett. 55, 1327 (1985).Google Scholar
10.Baraff, G.A. and Schlüter, M.S., Phys. Rev. B 33, 7346 (1986).Google Scholar
11.Donnelly, J.P. and Hurwitz, C.E., Solid-Stat Electron. 23, 943 (1980).Google Scholar
12.Astles, M.G., Smith, F.G.H., and Williams, E.W., J. Electrochem. Soc. 120, 1750, (1973).Google Scholar
13.De-Sheng, Jiang, Makita, Y., Ploog, K., and Queisser, H.J., J. Appl. Phys. 53, 999 (1981).Google Scholar
14.Chevrier, J., Horache, E., and Goldstein, L., J. Appl. Phys. 53, 3247 (1981).Google Scholar
15.Yuba, Y., Gamo, K., Masuda, K., and Namba, S., Japan. J. Appl. Phys. 13, 641 (1974).Google Scholar
16.Akimchenko, I.O., Panshina, E.G., Tikhonova, O.V. and Frimor, E.A., Sov. Phys. Semicon. 13, 1292 (1979).Google Scholar