Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T16:03:48.906Z Has data issue: false hasContentIssue false

Feasibility Study of Carbon Nanotube Microneedles for Rapid Transdermal Drug Delivery

Published online by Cambridge University Press:  15 July 2013

Bradley J. Lyon
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, U.S.A.
Adrianus I. Aria
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, U.S.A.
Morteza Gharib
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, U.S.A.
Get access

Abstract

We introduce a new approach for fabricating hollow microneedles using vertically-aligned carbon nanotubes (VA-CNTs) for rapid transdermal drug delivery. Here, we discuss the fabrication of the microneedles emphasizing the overall simplicity and flexibility of the method to allow for potential industrial application. By capitalizing on the nanoporosity of the CNT bundles, uncured polymer can be wicked into the needles ultimately creating a high strength composite of aligned nanotubes and polymer. Flow through the microneedles as well as in vitro penetration of the microneedles into swine skin is demonstrated. Furthermore, we present a trade study comparing the difficulty and complexity of the fabrication process of our CNT-polymer microneedles with other standard microneedle fabrication approaches.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, Y.-C., Park, J.-H. and Prausnitz, M. R., Advanced Drug Delivery Reviews 64(14), 15471568 (2012).CrossRefGoogle Scholar
Microchem, SU-8 2000 Processing Guidelines.Google Scholar
De Volder, M., Tawfick, S. H., Park, S. J., Copic, D., Zhao, Z., Lu, W. and Hart, A. J., Advanced materials 22(39), 43844389 (2010).CrossRefGoogle Scholar
Ci, L., Suhr, J., Pushparaj, V., Zhang, X. and Ajayan, P. M., Nano letters 8(9), 27622766 (2008).CrossRefGoogle Scholar
Gardeniers, H. J. G. E., Luttge, R., Berenschot, E. J. W., De Boer, M. J., Yeshurun, S. Y., Hefetz, M., van't Oever, R. and van den Berg, A., Microelectromechanical Systems, Journal of 12(6), 855862 (2003).CrossRefGoogle Scholar
Ma, B., Liu, S., Gan, Z., Liu, G., Cai, X., Zhang, H. and Yang, Z., Microfluidics and Nanofluidics 2(5), 417423 (2006).CrossRefGoogle Scholar
Yu, L. M., Tay, F. E. H., Guo, D. G., Xu, L. and Yap, K. L., Sensors and Actuators A: Physical 151(1), 1722 (2009).CrossRefGoogle Scholar
Davis, S. P., Landis, B. J., Adams, Z. H., Allen, M. G. and Prausnitz, M. R., Journal of biomechanics 37(8), 11551163 (2004).CrossRefGoogle Scholar
Norman, J. J., Choi, S. O., Tong, N. T., Aiyar, A. R., Patel, S. R., Prausnitz, M. R. and Allen, M. G., Biomedical microdevices 15(2), 203210 (2013).CrossRefGoogle Scholar