Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T23:45:48.839Z Has data issue: false hasContentIssue false

Facile Mechanochemical Synthesis and Magnetic Properties of pervoskite YCrxFe1-xO3, (0≤x1).

Published online by Cambridge University Press:  19 April 2012

Vijayalaxmi MalagaReddy
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152
Binod Rai
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152
Sanjay Mishra
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152
Chaunbing Rong
Affiliation:
Department of Physics, The University of Texas, Arlington, TX
J Liu
Affiliation:
Department of Physics, The University of Texas, Arlington, TX
Get access

Abstract

Single-phase samples of YCrxFe1−xO3 were synthesized by a mechanochemical method. X-ray diffraction data show linear reduction in the lattice parameters of YCrxFe1−xO3 perovskites with the Cr content, indicating that Cr ions substitute for Fe ions to form a solid solution. Magnetic measurements show hysteresis loops at 5K. The substitution of Cr for Fe enhances the magnetization for up to x=0.33 Cr doping level. For higher doping levels, 0.33<x<1, the system behaves as a frustrated system. At x=1, YCrO3 behaves as a week ferromagnet with TN ~140 K. The chloride salt based machenochemical method offers simple synthesis route for the synthesis of pure multiferroic compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, Z., Huang, Y., Dong, B., and Li, H. L., MRS Bull. 41, 274 (2006).Google Scholar
2. Toan, N. N., Saukko, S., and Lantto, V.. Physica B. 327, 279 (2003).Google Scholar
3. Niu, X. S., Du, W. M., and Du, W. P.., Sens. Actuators B. 99, 399 (2004).Google Scholar
4. Didosyan, Y. S., Hauser, H., Reider, G. A., and Toriser, W., J. Appl. Phys. 95, 7339 (2004).Google Scholar
5. Didosyan, Y. S., Hauser, H., and Nicolics, J., Sensors and Actuators, 81, 263 (2000).Google Scholar
6. Buscaglia, V.; Caracciolo, F.; Bottino, C.; Leoni, M.; Nanni, P. Acta Mater. 45, 1213(1997).Google Scholar
7. Kim, W., Jun, Y.K., Kim, K. H., and Hong, S. H., J. Magn. Magn. Mater. 321, 3262 (2009).Google Scholar
8. Chang, F. G., Song, G. L. and Fang, K., Acta Phys. Sin. 56 6068–74 (2007).Google Scholar
9. Smart, L.E., Moore, Elaine A., in: Solid State Chem., third ed., Taylor & Francis Group, 2005; B. I. Lee, E. J. A. Pope, in: Chemical Processing of Ceramic, Marcel Dekker Inc., 1994.Google Scholar
10. Kovacheva, S., Kovachevab, D., Aleksovskac, S., Svabd, E., Krezhov, K., 7th International Conference of the Balkan Physical Union, CP1203.Google Scholar
11. Chang, F., Zhang, N., Yang, F., Wang, S., and Song, G., J. Phys. D: Appl. Phys. 40, 7799 (2007).Google Scholar
12. Geller, S. and Wood, E. A., Acta Crystallogr. 9, 563 (1956).Google Scholar
13. Duran, A., Arevalo-Lopez, A. M., Castillo-Martınez, E., Garcıa-Guaderrama, M., Moran, E., Cruz, M. P., Fernandez, F., Alario-Franco, M. A., J. Solid State Chem. 183, 1863 (2010).Google Scholar
14. Bedekar, V., Shukla, R., and Tyagi, A.K., Nanotechnology, 18, 155706 (2007).Google Scholar
15. Tachiwaki, T., Kunifusa, Y., Yoshinaka, M., Hirota, K., and Yamaguchi, O., Int. J. Inorg. Mater. 3, 107 (2001).Google Scholar
16. Samal, S. L., Green, W., Lofland, S. E., Ramanujachary, K. V., Das, D., and Ganguli, A. K., J. Solid State Chem. 181, 61 (2008).Google Scholar
17. Chikazumi, S., Ohta, K., Adachi, K., Tsuya, N., and Ishikawa, Y., Handbook of Magnetic Materials_Asakura-syoten, Tokyo, 1975, p. 63 in Japanese Google Scholar
18. Li, J. B., Rao, G. H., Liang, J. K., Liu, Y. H., Luo, J., and Chen, J. R., Appl. Phys. Lett. 90, 162513 (2007).Google Scholar
19. Dahmani, A., Taibi, M., Nogues, M., Aride, J., Loudghiri, E., and Belayachi, A., Materials Chem. Phys. 77, 912 (2002).Google Scholar
20. Goodenough, J. B., Phys. Rev. 564, 100 (1955).Google Scholar
21. Moskovin, A. S., Ovanesyan, N.S., Trukhtanov, V.A., Hyp. Interact. 265, 1 (1975).Google Scholar