Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T14:01:02.861Z Has data issue: false hasContentIssue false

Fabrication of Three-Dimensional Photonic Crystal by Wafer Fusion Approach

Published online by Cambridge University Press:  21 March 2011

Noritsugu Yamamoto
Affiliation:
Research Institute of Photonics, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1, Umezono, Tsukuba 303-8568, Japan
Katsuhiro Tomoda
Affiliation:
Dept. of Electronic Science and Engineering, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
Susumu Noda
Affiliation:
Dept. of Electronic Science and Engineering, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan Core Research for Evolution Science and Technology (CREST), Japan Science and Technology Corporation (JST)
Get access

Abstract

Based on a set of requirements identified for photonic crystals intended for use in optoelectronic devices, we have developed a method of fabricating three-dimensional photonic crystals that involves stacking air/semiconductor gratings by wafer fusion approach. Precise alignment of the stacked layers is achieved through the use of a laser beam assisted very precise alignment system, and three-dimensional photonic crystal has been successfully fabricated for the infrared and optical communication wavelength regions. We have also developed a photonic crystal waveguide providing sharp 90° bend.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987)Google Scholar
2. John, S., Phys. Rev. Lett. 58, 2486 (1987)Google Scholar
3. Noda, S., Tomoda, K., Yamamoto, N. and Chutinan, A., Science 289, 604 (2000)Google Scholar
4. Noda, S., Chutinan, A. and Imada, M., Nature 407, 608 (2000)Google Scholar
5. Imada, M., Noda, S., Chutinan, A., A, Tokuda, T., Murata, M. and Sasaki, G., Appl. Phys. Lett. 75, 316 (1999)Google Scholar
6. Astratov, V. N., Bogomolov, V. N., Kaplyanskii, A. A., Prokofiev, A. V., Samoilovich, L. A., Samoilovich, S. M. and Vlasov, Y. A. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 17, 1349 (1995)Google Scholar
7. Cheng, C. C. and Scherer, A., J. Vac. Sci. and Technol. B, 13, 2696 (1995)Google Scholar
8. Lin, S. Y., Fleming, J. G., Hetherington, D. L., Smith, B. K., Biswas, R., Ho, K. M., Sigalas, M. M., Zubrzycki, W., Kurtz, S. R. and Bur, J., Nature, 394, 251 (1998)Google Scholar
9. Noda, S., Yamamoto, N. and Sasaki, A., Jpn. J. Appl. Phys. 35, L909 (1996)Google Scholar
10. Yamamoto, N. and Noda, S., Jpn. J. Appl. Phys. 37, 3334 (1998).Google Scholar
11. Noda, S., Yamamoto, N., Imada, M., Kobayashi, H. and Okano, M., J. Lightwave Technol. 17, 1948 (1999)Google Scholar
12. Noda, S., Yamamoto, N., Kobayashi, H., Okano, M. and Tomoda, K., Appl. Phys. Lett. 75, 905 (1999)Google Scholar
13. Chutinan, A. and Noda, S., Appl. Phys. Lett. 75, 3739 (1999)Google Scholar