Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:32:15.254Z Has data issue: false hasContentIssue false

Fabrication of Piezoelectric Polyvinylidene Fluoride (PVDF) Microstructures by Soft Lithography for Tissue Engineering and Cell Biology Applications

Published online by Cambridge University Press:  17 March 2011

Daniel Gallego
Affiliation:
Biomedical Engineering, The Ohio State University, 270 Bevis Hall, 1080 Carmack Road, Columbus, OH, 43210
Nicholas J. Ferrell
Affiliation:
Biomedical Engineering, The Ohio State University, 270 Bevis Hall, 1080 Carmack Road, Columbus, OH, 43210
Derek J. Hansford
Affiliation:
Biomedical Engineering, The Ohio State University, 270 Bevis Hall, 1080 Carmack Road, Columbus, OH, 43210
Get access

Abstract

A method for the fabrication of piezoelectric polyvinylidene fluoride (PVDF) microstructures is described. Embossed and individual features with highly defined geometries at the microscale were obtained using soft lithography-based techniques. Various structure geometries were obtained, including pillars (three different aspect ratios), parallel lines, and criss-crossed lines. SEM characterization revealed uniform patterns with dimensions ranging from 2 μm ñ 15 μm. Human osteosarcoma (HOS) cell cultures were used to evaluate the cytocompatibility of the microstructures. SEM and fluorescence microscopy showed adequate cell adhesion, proliferation, and strong interaction with tips and corners of the microdiscontinuities. Microfabricated piezoelectric PVDF structures could find applications in the fabrication of mechanically active tissue engineering scaffolds, and the development of dynamic sensors at the cellular and subcellular levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dalby, M.J.., Riehle, M.O., Johstone, H., Affrossman, S., Curtis, A.S., Cell. Biol. Int. 28, 229 (2004).Google Scholar
2. Dalby, M.J., Riehle, M.O., Johstone, H., Affrossman, S., Curtis, A.S., Biomaterials 23, 2945 (2002).Google Scholar
3. Gallagher, J.O., McGhee, K.F., Wilkinson, C.D.W, Riehle, M.O., IEEE Trans. Nanobiosci 1, 24 (2002).Google Scholar
4. Voldman, J., Gray, M.L., Schmidt, M.A., Annu Rev Biomed Eng 01, 401 (1999).Google Scholar
5. Galbraith, C.G., Sheetz, M.O., Curr. Opin. Cell. Biol. 10, 566 (1998)Google Scholar
6. Bhatia, S.N., Chen, C.S., Biomedical Microdevices 2, 131 (1999).Google Scholar
7. Aguirre, J.I., Plotkin, L.I., Stewart, S.A., Weinstein, R.S., Parfitt, A.M., Manolagas, S.C., Bellido, T., J Bone Miner Res 21, 605 (2006).Google Scholar
8. Madou, M., Fundumentals of Microfabrication, (CRC Press, Boca Raton, 1997) p 2.Google Scholar
9. Xia, Y., Whitesides, G.M., Annu. Rev. Mater. Sci. 28, 153 (1998).Google Scholar
10. Braet, F., Zanger, R. De, Wisse, E., Journal of Microscopy 186, 84 (1997).Google Scholar
11. Braber, E.T. den, Ruijter, J.E. de, Ginsel, L.A., Recum, A.F. von, Jansen, J.A., J. Biomed. Mater. Res. 29, 511 (1995).Google Scholar
12. Lu, H.F., Lim, W.S., Wang, J., Tang, Z.Q., Zhang, P.C., Leong, K.W., Chia, S.M., Yu, H., Mao, H.Q., Biomaterials 24, 4893 (2003).Google Scholar
13. Klee, D., Ademovic, Z., Bosserhoff, A., Hoecker, H., Maziolis, G., Erli, H.J., Biomaterials 24, 3663 (2003).Google Scholar
14. Dalby, M. J., McCloy, D., Robertson, M., Agheli, H., Sutherland, D., Affrossman, S., Oreffo, R.O.C., Biomaterials 27, 2980 (2006).Google Scholar