Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T13:04:11.753Z Has data issue: false hasContentIssue false

Fabrication of Grain-Aligned Bulks and Thick Films of Misfit Layered Cobalt Oxides by a Magneto-Scientific Process

Published online by Cambridge University Press:  01 February 2011

Shigeru Horii
Affiliation:
tholy@mail.ecc.u-tokyo.ac.jp, Univ. of Tokyo, Dept. Appl. Chem., Hongo 7-3-1, Bunkyo-ku,, Tokyo, Tokyo, 113-8656, Japan, +81-3-5841-7777
Taichi Okamoto
Affiliation:
tt46743@mail.ecc.u-tokyo.ac.jp
Toshiaki Kumagai
Affiliation:
tt46751@mail.ecc.u-tokyo.ac.jp
Tetsuo Uchikoshi
Affiliation:
UCHIKOSHI.Tetsuo@nims.go.jp
Tohru S. Suzuki
Affiliation:
SUZUKI.Tohru@nims.go.jp
Yoshio Sakka
Affiliation:
Sakka.Yoshio@nims.go.jp
Jun-ichi Shimoyama
Affiliation:
shimo@sogo.t.u-tokyo.ac.jp
Kohji Kishio
Affiliation:
tkishio@mail.ecc.u-tokyo.ac.jp
Get access

Abstract

We report the preparation of grain-aligned [Ca2CoO3−δ]0.62CoO2 (Ca349) thick films and the conversion of the easy axis of magnetization from the a-axis to the c-axis. The thick films were fabricated by a simultaneous usage of electrophoretic deposition and magnetic alignment methods (MEPD) at high deposition rate with the order of 10 mm/min. Moreover, a multi-layered thick film of Al2O3/Ca349/Al2O3/Ca0.9La0.1MnO3/Al2O3 was also fabricated by the MEPD method by the optimization of condition of each suspension. The conversion of the easy axis was performed crystallochemically for a [Bi2Sr2O4]0.55CoO2 (BiSr222) compound with the easy axis parallel to the a-axis in order to fabricate c-axis grain-oriented bulks by the magnetic alignment method. The substitution of Ca for Sr in the [(Bi0.5Pb0.5)2Sr2O4] block layer induced the change of the easy axis into the c-axis direction, and the magnetic anisotropy was increased by the partial substitution of rare earth elements of Pr, Nd, Tb and Dy for Ca. Using a compound of [(Bi0.5Pb0.5)2(Ca0.8Pr0.2)2O4]0.55CoO2, we have successfully prepared the c-axis grain-aligned bulk by the magneto-scientific method. Our present results indicate that the magneto-scientific method is one of the useful and realistic processes for production of thermoelectric modules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Terasaki, I., Sasago, Y. and Uchinokura, K., Phys. Rev. B56 (1997) R12685.Google Scholar
2. Miyazaki, Y., Kudo, K., Akoshima, M., Ono, Y., Koike, Y., and Kajitani, T., Jpn. J. Appl. Phys. 39 (2000) L531.Google Scholar
3. Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B., and Hejtmanek, J., Phys. Rev. B62 (2000) 166.Google Scholar
4. Funahashi, R., Matsubara, I., and Sodeoka, S., Appl. Phys. Lett. 76 (2000) 2385.Google Scholar
5. Ohtaki, M., Koga, H., Tokunaga, T., Eguchi, K., and Arai, H., J. Solid State Chem. 120 (1995) 105.Google Scholar
6. Funahashi, R., Urata, S., and Kitawaki, M., Appl. Surf. Sci. 223 (2004) 44.Google Scholar
7. Masuda, Y., Ohta, M., Seo, W.S., Pitschke, W., and Koumoto, K., J. Solid State Chem. 150 (2000) 221.Google Scholar
8. Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U., and Sodeoka, S., Jpn. J. Appl. Phys. 39 (2000) L1127.Google Scholar
9. Itahara, H., Fujita, K., Sugiyama, J., Nakamura, K. and Tani, T., J. Ceram. Soc. Jpn. 111 (2003) 227.Google Scholar
10. Shin, W., and Murayama, N., J. Mater. Res., 15 (2000) 382.Google Scholar
11. Matsubara, I., Funahashi, R., Takeuchi, T., and Sodeoka, S., J. Appl. Phys. 90 (2001) 462.Google Scholar
12. Sano, M., Horii, S., Matsubara, I., Funahashi, R., Shikano, M., Shimoyama, J., and Kishio, K., Jpn. J. Appl. Phys. 42 (2003) L198.Google Scholar
13. Horii, S., Matsubara, I., Sano, M., Fujie, K., Suzuki, M., Funahashi, R., Shikano, M., Shin, W., Murayama, N., Shimoyama, J., and Kishio, K., Jpn. J. Appl. Phys., 42 (2003) 7018.Google Scholar
14. Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B., and Hejmanek, J., Phys. Rev. B, 62 (2000) 166.Google Scholar
15. Suzuki, M., Horii, S., Sano, M., Fujie, K., Otzschi, K., Shimoyama, J., and Kishio, K., Mater. Res. Soc. Symp. Proc. 755 (2003) 10.5.1.Google Scholar
16. Kumagai, T., Horii, S., Uchikoshi, T., Suzuki, T.S., Sakka, Y., Okamoto, T., Shimoyama, J. and Kishio, K., Jpn. J. Appl. Phys. 44 (2005) L1263.Google Scholar