Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:12:10.396Z Has data issue: false hasContentIssue false

Fabrication of 2-D and 3-D Photonic Bandgap Structures Using Laser-assisted Imprinting of Self-assembled Particles

Published online by Cambridge University Press:  15 March 2011

Y.F. Lu
Affiliation:
Department of Electrical Engineering, the University of Nebraska-Lincoln, NE 68588-0511 Tel: (402) 472-8323, Fax: (402) 472-4732, Email: ylu2@unl.edu
L.P. Li
Affiliation:
Department of Electrical Engineering, the University of Nebraska-Lincoln, NE 68588-0511, Tel: (402) 472-8323, Fax: (402) 472-4732
K.K. Mendu
Affiliation:
Department of Electrical Engineering, the University of Nebraska-Lincoln, NE 68588-0511, Tel: (402) 472-8323, Fax: (402) 472-4732
J. Shi
Affiliation:
Department of Electrical Engineering, the University of Nebraska-Lincoln, NE 68588-0511, Tel: (402) 472-8323, Fax: (402) 472-4732
D.W. Doerr
Affiliation:
Department of Electrical Engineering, the University of Nebraska-Lincoln, NE 68588-0511, Tel: (402) 472-8323, Fax: (402) 472-4732
D.R. Alexander
Affiliation:
Department of Electrical Engineering, the University of Nebraska-Lincoln, NE 68588-0511, Tel: (402) 472-8323, Fax: (402) 472-4732
Get access

Abstract

Fabrication of 2-D and 3-D photonic bandgap (PBG) structures on silicon substrates using laser-assisted nanoimprinting of silica particles has been investigated. Monolayers of silica particles, with different diameters ranging from 160 nm to 5 νm, were deposited on silicon substrates by self-assembly. A quartz plate, which is transparent to the laser wavelength of 248 nm, was tightly placed on the substrate surface. A KrF excimer laser beam with the wavelength of 248 nm was vertically irradiated on the quartz/nanoparticle/silicon structure. The silica particles were imprinted into silicon substrates by the quartz to form a 2-D PBG structure due to the transient Si surface melting during the laser pulse. 3-D PBG structures can be fabricated by directly imprinting multilayer self-assembled silica particles into Si substrates. They can also be fabricated by repeating a process cycle of silica nanoparticles self-assembly, amorphous Si layer deposition, and simultaneous laser melting, imprinting and recrystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McCord, M. A., J. Vac. Sci. Technol. B 15, 2125 (1997).Google Scholar
2. Dial, C. C. Cheng and Scherer, A., J. Vac. Sci. Technol. B 16, 3887 (1998).Google Scholar
3. Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L. and Zhuang, L., J. Vac. Sci. Technol. B 15, 2897 (1997).Google Scholar
4. Pease, R. F. W., J. Vac. Sci. Technol. B 10, 278 (1992).Google Scholar
5. Silverman, J. P., J. Vac. Sci. Technol. B 15, 2117 (1997).Google Scholar
6. Wallraff, G. M., Hinsberg, W. D., Chem. Rev., 99, 1801 (1999).Google Scholar
7. Ito, T., Okazaki, S., Nature, 406, 1027 (2000).Google Scholar
8. Haes, A. J., Haynes, C. L., Duyne, R. P. van, MRS Symp. 636, D4.8.1 (2001).Google Scholar
9. Stroscio, J. A., Eigler, D. M., Science, 254, 1319 (1991).Google Scholar
10. Liu, G. Y., Xu, S., Qian, Y., Acc. Chem. Res., 33, 457 (2000).Google Scholar
11. Chou, S. Y., Krauss, P. R., and Renstrom, P. J., Science 272, 85 (1996).Google Scholar
12. Kamins, T. I., Ohlberg, D. A. A., and Williams, R. S., Appl. Phys. Lett. 74, 1773 (1999).Google Scholar
13. Huang, S. M., Hong, M. H., Lukyanchuk, B. S., Zheng, Y. W., Song, W. D., Lu, Y. F., and Chong, T. C., J. Appl. Phys. 92, 2495 (2002).Google Scholar
14. Ng, V., Lee, Y. V., Chen, B. T. and Adeyeye, A. O., Nanotechnology 13, 554 (2002).Google Scholar
15. Mosbacher, M., Chaoui, N., Siegel, J., Dobler, V., Solis, J., Boneberg, J., Afonso, C.N., and Leiderer, P., Appl. Phys. A: Mater. Sci. Process. 69, S331 (1999).Google Scholar
16. Burmeister, F., Schäfle, C., Keilhofer, B., Bechinger, C., Boneberg, J., and Leiderer, P., Adv. Mater. 10, 495 (1998).Google Scholar
17. Hulteen, J. C. and Duyne, R P. Van, J. Vac. Sci. Technol. A 3, 1553 (1995).Google Scholar
18. SLIM is a copyrighted program developed by Singh, Rajiv K. and Viatella, J. at Materials Science and Engineering Department at the University of Florida.Google Scholar
19. Hayashi, S., amamoto, Y. K, Sutuki, T., and Hirai, T., J. Colloid Interface Sci. 144, 538 (1991).Google Scholar
20. Luk'yanchuk, B.S., Zheng, Y.W. and Lu, Y.F., Proc. SPIE 4065, 576 (2000).Google Scholar
21. Stratton, J.A., Electromagnetic Theory, (McGraw-Hill, New York, 1941).Google Scholar
22. Hulst, H.C.Van de, Light Scattering by Small Particles, (Dover, New York, 1981).Google Scholar
23. Bohren, C.E. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, (Willey, New York, 1983).Google Scholar
24. Kerker, M., The Scattering of Light, (Academic, New York, 1969).Google Scholar