Published online by Cambridge University Press: 15 March 2011
Calcium phosphate in the form of apatite has been successfully precipitated on the surface of liposomes. Liposome vesicles were prepared by sonication of phosphatidylcholine and this was introduced into an aqueous solution of calcium and phosphate ions supersaturated with respect to hydroxyapatite. Calcium phosphate was shown to precipitate solely on the outer layer surface of the liposome vesicles. These composite assemblies were then deposited onto a stainless steel cathode substrate using an electrophoretic method at physiological temperatures.
Scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder xray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse the morphology, structure and chemical composition of the composite coating. The results from PXRD and FTIR show a mixture of amorphous and poor crystalline hydroxyapatite (HAp). This was verified by electron diffraction. Dark field images confirmed that the precipitated HAp deposited solely at the outer surface of the liposomes. SEM micrographs demonstrated a thin uniform coating at the microstructure level. These results suggest that these calcium phosphateliposome composites can be formed. They have tremendous potential for use as drug delivery devices in aiding the treatments of bone disorders.