Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:32:47.677Z Has data issue: false hasContentIssue false

Exploring Magnetic properties of Epitaxial Films and Superlattices

Published online by Cambridge University Press:  26 February 2011

J. L. Erskine
Affiliation:
Department of Physics, University of Texas at Austin Austin, Texas 78712
M. F. Onellion
Affiliation:
Department of Physics, University of Texas at Austin Austin, Texas 78712
M. A. Thompson
Affiliation:
Department of Physics, University of Texas at Austin Austin, Texas 78712
Get access

Abstract

Recent advances in spin-sensitive spectroscopie techniques combined with the rapidly expanding capabilities to synthesize novel materials utilizing molecular beam epitaxy (MBE) are stimulating new interest in magnetism and magnetic materials. Epitaxial growth offers opportunities to stabilize and study crystal phases of elemental magnetic materials which do not naturally occur in nature, and to vary the crystal parameters and composition of epitaxial films in precisely controlled ways. Multilayer superlattice films can also be fabricated using MBE. These structures offer unprecedented new opportunities to explore the relationship between crystal structure and various magnetic properties such as spontaneous magnetization, the Curie temperature and magnetic anisotropy in well characterized systems. The present paper reviews some of the more recent work on thin film magnetic systems including structure analysis of film quality, new techniques for probing the electronic and magnetic properties of the films and the important role large scale numerical calculations are beginning to play in guiding the choice of magnetic systems for study.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. White, R. M., Science 229, 11 (1985).Google Scholar
2.Current Status of Facilities Dedicated to the Production of Synchrotron Radiation.” (National Academy Press, Washington, D.C., 1983).Google Scholar
3. Attwood, D., Halbach, K., and Kim, K.-J., Science 228, 1265 (1985).CrossRefGoogle Scholar
4. Robinson, A. L., “Microscopy with Spin-Polarized Electrons,” in Science 230, 53 (1985).CrossRefGoogle ScholarPubMed
5. Unguris, J., Pierce, D. T., Galejs, A., Celotta, R. J., Phys. Rev. Lett. 49, 72 (1982).CrossRefGoogle Scholar
6. Unguris, J., Hembree, G. G., Celotta, R. J., Pierce, D. T., Microscopy, J. (in press).Google Scholar
7. Koike, K. and Hayakawa, K., J. Appl. Phys. 57, 4244 (1985).CrossRefGoogle Scholar
8. Gray, L. G., Hart, M. W., Dunning, F. B., and Walters, G. K., Rev. Sci. Instrum. 55, 88 (1984).CrossRefGoogle Scholar
9. Novel Materials and Techniques in Condensed Matter, edited by Crabtree, G. W. and Vashista, P. (Elsevier, New York, 1982).Google Scholar
10. Freeman, A. J., J. Magn. Mater. 35, 31 (1983).CrossRefGoogle Scholar
11. Gay, J. G. and Richter, R., Phys. Rev. Lett. 56, 2728 (1986).Google Scholar
12. Jonkers, B. T., Walker, K.H., Kisker, E., Prinz, G. A., and Carbone, C., Phys. Rev. Lett. 57, (1986) have done the pioneering Fe/Ag(100) experiment.Google Scholar
13. Moruzzi, V. L., Marcus, P. M., Schwartz, K., and Mohn, P., Phys. Rev. B34. 1784 (1986).CrossRefGoogle Scholar
14. Fu, C. L., Freeman, A. J., and Oguchi, T., Phys. Rev. Lett. 54. 2700 (1985).CrossRefGoogle Scholar
15. Schroeder, K., Prinz, G. A., Walker, K. H., and Kisker, E., J. Appl. Phys. 57, 3669 (1985).Google Scholar
16. Fu, C. L. and Freeman, A. J., in preparation.Google Scholar
17. Fu, C. L. and Freeman, A. J., J. Magn. Magn. Mater, (in press).Google Scholar
18. Fernando, G. W., Lee, Y.C., Montano, P. A., Cooper, B. R., Moog, E. R., Naik, H. M., and Bader, S. D., due to appear in J. Vac. Sci. Technol., July, 1987.Google Scholar
19. Onellion, M. F., Fu, C. L., Thompson, M. A., Erskine, J. L., and Freeman, A. J., Phys. Rev. B33, 7522 (1986).Google Scholar
20. Onellion, M., Thompson, M. A., Erskine, J. L., Duke, C. B. and Patton, M., Surface Science (in press).Google Scholar
21. Korecki, J. and Gradmanu, U., Hyperfine Interact. 28, 931 (1986).CrossRefGoogle Scholar
22. Fu, C. L. and Freeman, A. J., private communication.Google Scholar
23. Pierce, D. T. and Siegmann, H. C., Phys. Rev. B9. 4035 (1974).Google Scholar
24. Thompson, M. A. and Erskine, J. L., Phys. Rev. B31. 6832 (1985).Google Scholar
25. Wang, D., Freeman, A. J., and Krakauer, H., Phys. Rev. B24, 1126 (1981).Google Scholar
26. Tersoff, J. and Falicov, L. M., Phys. Rev. B26, 6186 (1982); 25 2959 (1982).Google Scholar
27. Zhu, X. Y., Hermanson, J., Arlinghaus, F. J., Gay, J. G., Richter, R. and Smith, J. R., Phys. Rev. B22, 4426 (1984).Google Scholar
28. Bergholz, R. and Gradmann, U., J. Magn. Magn. Mater. 45, 389 (1984).CrossRefGoogle Scholar
29. Gradmann, U. and Bergholz, R., Phys. Rev. Lett. 52, 771 (1984).Google Scholar
30. Weiler, D., Alvarado, S. F., Gudat, W., Schroeder, K., and Campagna, M., Phys. Rev. Lett. 54, 1555(1985).Google Scholar
31. Taborelli, M., Allenspach, R., Botfa, G., and Landolt, M., Phys. Rev. Lett. 56, 2869 (1986).Google Scholar
32. Brodsky, M. B., J. Magn. Magn. Mater. 25, 99 (1983).CrossRefGoogle Scholar
33. Chappert, C., Beauvillain, P., Renard, J. P., and Renard, D., J. Phys. (Paris) Lett. 46, L59 (1985).Google Scholar
34. Jarlborg, T. and Freeman, A. J., Physica B and C 107. 69 (1981).Google Scholar
35. Prinz, G. A., Phys. Rev. Lett. 54, 1051 (1985).Google Scholar
36. Miranda, R., Yndurain, F., Chandesris, D., Lecante, J., and Petroff, Y., Phys. Rev. B25. 527 (1982);Google Scholar
Gradmann, U., Phys. Rev. B27, 1935 (1983).Google Scholar
37. Blandin, A., “Theory of Condensed Matter,” IAEA, Vienna, 1968, pp. 691f.Google Scholar
38. Zajac, G., Bader, S. D., and Friddle, R. J., Phys. Rev. B31., 4947 (1985).Google Scholar
39. Fu, C. L. and Freeman, A. J., J. Magn. Magn. Mater. 54–57. 777 (1986).Google Scholar
40. O'Neill, M. R., Kalisvaart, M., Dunning, F. B., and Walters, G. K., Phys. Rev. Lett. 34, 1167(1975).Google Scholar
41. Hong, S. C., Fu, C. L., and Freeman, A. J., in preparation.Google Scholar
42. Brodsky, M. B., Marikar, P., Friddle, R. J., Singer, L., and Sowers, C. H., Solid State Commun. 42, 675 (1982).CrossRefGoogle Scholar
43. Brodsky, A. M., Sill, L. R., and Sowers, C. H., J. Magn. Magn. Mater. 54–57. 779 (1986).Google Scholar
44. Brodsky, A. M., J. Magn. Magn. Mater. 35, 99 (1983).CrossRefGoogle Scholar
45. Brodsky, M. B. and Freeman, A. J., Phys. Rev. Lett. 45, 133 (1980).Google Scholar
46. Sill, L. R., Brodsky, M. B., Bowen, S., and Hamaker, H. C, J. Appl. Phys. 57, 3663(1985).Google Scholar
47. Wang, D. S., Freeman, A. J., and Krakauer, H., Phys. Rev. B24. 1126 (1981).Google Scholar
48. Homma, H., Chun, C. S. L., Zheng, G. G., and Schuller, J. K., Phys. Rev. B33, 3562 (1986) and references therein.Google Scholar
49. Bulaeuskii, L. N., Buzdin, A. I., Kulic, M. L, and Paniukov, S. V., Adv. Phys. 34. 175 (1985).Google Scholar
50. Hosoito, N., Kawaguchi, K., Shiujo, T., Takada, T., and Endoh, Y., J. Phys. Soc. Jpn. 53, 2659 (1984).Google Scholar
51. Hamada, N., Terakura, K., and Yanase, A., J. Magn. Magn. Mater. 35, 7 (1983) for Fe(100) layers.Google Scholar
52. Lowe, W. P., Gyorgy, E. M., McWhan, D. B., Greene, L. H., Feldman, W. L., and Rowell, J. M., J. Appl. Phys. 58, 1615 (1965).Google Scholar
53. Majkrzak, C. F., Cable, J. W., Kwo, J., Houg, M., McWhan, D. B., Yafet, Y., Wasczak, J. V., and Vettier, C., Phys. Rev. Lett. 56, 2700 (1986).CrossRefGoogle Scholar
54. Salamon, M. B., Sinha, S., Rhyne, J. J., Cunningham, J. E., Erwin, R. W., Borchers, J., and Flynn, C. P., Phys. Rev. Lett. 56, 259 (1986).Google Scholar
55. Korecki, J. and Gradmann, U., Phys. Rev. Lett. 55, 2491 (1985).Google Scholar
56. For an introduction, see Gruenberg, P., J. Appl. Phys. 57, 3673 (1985).Google Scholar
57. Krishnan, R., J. Magn. Magn. Mater. 50, 189 (1985).Google Scholar
58. Droste, R., Stern, G. and Walker, J. C, J. Magn. Magn. Mater. 54–57. 763 (1986).Google Scholar
59. Falco, C. M., private communication.Google Scholar
60. Hillebrands, B., Baumgart, P., Mock, R., Guenthrodt, G., Boufelfel, A., and Falco, C. M., submitted to Phys. Rev. B.Google Scholar
61. Ohnishi, S., Fu, C. L. and Freeman, A. J., J. Magn. Magn. Mater. 50– 161 (1985); for earlier work seeGoogle Scholar
Hattox, T. M., Conklin, J. B. Jr, Slater, J. C, and Trickey, S. B., J. Phys. Chem. Solids 34, 1627 (1973).Google Scholar
62. Grimsditch, M., Khan, M. R., Kueny, A., and Schuller, I. K., Phys. Rev. Lett. 51, 498(1983).Google Scholar
63. Camley, R. E., Rahman, T. S., and Mills, D. L, Phys. Rev. B27, 261 (1983).Google Scholar
64. Prinz, G. A., Phys. Rev. Lett. 54, 1051 (1985).Google Scholar
65. Tear, S. P. and Roll, K., J. Phys. C5, 5521 (1982).Google Scholar
66. Haase, O., Z. Naturforsch A14, 920 (1959).Google Scholar
67. Jesser, W. A. and Matthews, J. W., Phil. Mag. 15, 1092 (1967).Google Scholar
68. Montano, P. A. (private communication).Google Scholar
69. Pescia, D., Amiri-Hezareh, A., Willis, R. F., Prince, K. C., Surman, M., and Bradshaw, A. M., BESSY Annual Report 1985; Solid State Commun. 57, 329 (1986).Google Scholar
70. Bagayok, D. and Callaway, J., Phys. Rev. B28, 5419 (1983).Google Scholar
71. Cooper, B. P., private communication.Google Scholar
72. (Spin polarized photoemission) Siegmann, H. C., Phys. Reports (Section C of Physics Letters). 17, 37 (1975).Google Scholar
73. Clauberg, R., Gudat, W., Kisker, E., Kuhlemann, E. and Rothberg, G. M., Phys. Rev. Lettt. 47, 1314 (1981).Google Scholar
74. Kisker, E., Schroder, K., Campagna, M., and Gudat, W., Phys. Rev. Lett. 52, 2285(1984).Google Scholar
75. Kisker, E., Schroder, K., Gudat, W., and Campagna, M., Phys. Rev. B31. 329 (1985).Google Scholar
76. Erskine, J. L. and Stern, E. A., Phys. Rev. Lett. 30, 1329 (1973).Google Scholar
77. Busch, G., Campagna, M., and Siegmann, H. C., Phys. Rev. B4, 746 (1971).Google Scholar
78. Weller, D., Alvarado, S. F., Campagna, M., Gudat, W. and Sarma, D. D., J. Less Common Metals, 111, 277 (1985).Google Scholar
79. Weller, D., Alvarado, S. F., Gudat, W., Schräoder, K., and Campagna, M., Phys. Rev. Lett. 54. 1555 (1985).Google Scholar
80. Bader, S. D., Moog, E. R., and Grhëunberg, P., J. Magn. Magn. Mater. 53, L295 (1986).Google Scholar
81. Landolt, M. and Mauri, D., Phys. Rev. Lett. 49, 1783 (1982).Google Scholar
82. Guilloy, C., Ballu, Y., Paigne, J., Lecante, J., Jain, K. P., Thiry, P., Pinchaux, R., Petroff, Y. and Falicov, L. M., Phys. Rev. Lett. 29, 1632 (1977).Google Scholar
83. Allenspach, R. and Landolt, M., Surf. Sci. 171, L479 (1986).Google Scholar
84.Polarized Electrons in Surface Physics,” Feder, R., World Scientific Publishing Co. (1985).Google Scholar
85.Polarized Electrons at Surfaces,” Kirschner, J., Springer-Verlag (1985).Google Scholar
86. Chrobok, G. and Hoffman, M., Phys. Lett. 57A, 257 (1976).Google Scholar
87. Palmberg, P. W., de Warnes, R. E., and Vredevoc, L. A., Phys. Rev. Lett. 21, 682 (1968).Google Scholar
88. Feder, R., Alvarado, S. F., Tamura, E., and Kisker, E., Surf. Sci. 127, 83 (1983).Google Scholar
89. Celotta, R. J., Pierce, D. T., Wang, G.-C., Bader, S. D., and Felcher, G. P., Phys. Rev. Lett. 43, 728 (1979).Google Scholar
90. Rau, C. and Eichner, S. in “Nuclear Methods in Materials Research,” ed. Bedge, K., Baumann, H., Jex, H. and Rauch, F., (Vieweg, Braunschweig), pp. 354f.Google Scholar
91. Onellion, M., Hart, M. W., Dunning, F. B. and Walters, G. K., Phys. Rev. Lett. 52, 380 (1984).Google Scholar
92. Rau, C., Liu, C., Schmalzbauer, A., and Xing, G., Phys. Rev. Lett. 57, 2311 (1986).Google Scholar
93. Rau, C., J. Magn. Magn. Mater. 30, 141 (1982).Google Scholar
94. Bergmann, G., Phys. Rev. Lett. 41, 264 (1978).Google Scholar
95. Taborelli, M., Allenspach, R., Boffa, G., and Landolt, M., Phys. Rev. Lett. 56, 2869 (1986).Google Scholar