Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T14:50:31.605Z Has data issue: false hasContentIssue false

Experimental Tests of Possible Mechanisms for the Organic Magnetoresistive Effect

Published online by Cambridge University Press:  26 February 2011

Tho Duc Nguyen
Affiliation:
emailtho01@yahoo.com, The University of Iowa, Physics and Astronomy, 203 Van Allen Hall, Iowa city, IA, 52242, United States, 319 353 4480
James Rybicki
Affiliation:
jamesrybicki@gmail.com, The University of Iowa, Physics and Astronomy, 188 IATL, Iowa city, IA, 52242, United States
Yugang Sheng
Affiliation:
yugang.sheng@gmail.com, The University of Iowa, Physics and Astronomy, 188 IATL, Iowa city, IA, 52242, United States
Markus Wohlgenannt
Affiliation:
markus-wohlgenannt@uiowa.edu, The University of Iowa, Physics and Astronomy, 188 IATL, Iowa city, IA, 52242, United States
Get access

Abstract

We experimentally test three existing models of organic magnetoresistance (OMAR) which are all based on carrier spin dynamics. We first prove that hyperfine field originating from the hydrogen nuclei in organic materials is necessary for observing OMAR by studying C60 sandwich devices using several different electrode materials. We show that C60, unlike many other organic semiconductors, does not exhibit any intrinsic OMAR effect. However, we find that as soon as the carriers in C60 are brought in proximity with hydrogen-containing compounds, either in the form of a polymeric electrode, or side-chain substituents, a weak OMAR effect is observed. Next, we perform charge-induced absorption and electroluminescence spectroscopy in a polyfluorene organic magnetoresistive device. Our experiments allow us to measure the singlet exciton, triplet exciton and polaron densities in a live device under an applied magnetic field, and to distinguish between three models of OMAR. These models are based on different spin-dependent interactions, namely exciton formation, triplet exciton-polaron quenching and bipolaron formation. We show that the singlet exciton, triplet exciton and polaron densities and conductivity all increase with increasing magnetic field. Our data are inconsistent with the exciton formation and triplet-exciton polaron quenching models.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Naber, W. J. M., Faez, S., and Wiel, W. G. van der, J. Phys. D: Appl. Phys. 40, R205 (2007).Google Scholar
[2] Francis, T. L., Mermer, O., Veeraraghavan, G., and Wohlgenannt, M., New J. Phys. 6, 185 (2004).10.1088/1367-2630/6/1/185Google Scholar
[3] Mermer, O., Veeraraghavan, G., Francis, T., and Wohlgenannt, M., Solid State Commun. 134, 631 (2005).10.1016/j.ssc.2005.02.044Google Scholar
[4] Prigodin, V., Bergeson, J., Lincoln, D., and Epstein, A., Synth. Metals 156, 757 (2006).10.1016/j.synthmet.2006.04.010Google Scholar
[5] Bloom, F. L., Wagemans, W., Kemerink, M., Koopmans, B., Separating positive and negativemagnetoresistance in organic semiconductor devices, Phys. Rev. Lett. in print.Google Scholar
[6] Frankevich, E., Lymarev, A., Sokolik, I., Karasz, F., Blumstengel, S., Baughman, R., and Hoerhold, H., Phys. Rev. B 46, 9320 (1992).Google Scholar
[7] Sheng, Y., Nguyen, T. D., Veeraraghavan, G., Mermer, O., Wohlgenannt, M., Qiu, S., and Scherf, U., Phys. Rev. B 74, 045213 (2006).10.1103/PhysRevB.74.045213Google Scholar
[8] Wu, Y., Xu, Z., Hu, B., and Howe, J., Phys. Rev. B 75, 035214 (2007).10.1103/PhysRevB.75.035214Google Scholar
[9] Hu, B., Wu, Y., Tuning magnetoresistance between positive and negative values in organic semiconductors, Nature Materials.Google Scholar
[10] Kalinowski, J., Cocchi, M., Virgili, D., Marco, P. D., and Fattori, V., Chem. Phys. Lett 380, 710 (2003).10.1016/j.cplett.2003.09.086Google Scholar
[11] Odaka, H., Okimoto, Y., Yamada, T., Okamoto, H., Kawasaki, M., and Tokura, Y., Appl. Phys. Lett. 88, 123501 (2006).10.1063/1.2185256Google Scholar
[12] Iwasaki, Y., Osasa, T., Asahi, M., Matsumura, M., Sakaguchi, Y., and Suzuki, T., Phys. Rev. B 74, 195209 (2006).10.1103/PhysRevB.74.195209Google Scholar
[13] Desai, P., Shakya, P., Kreouzis, T., Gillin, W. P., Morley, N. A., and Gibbs, M. R. J., Phys. Rev. B 75, 094423 (2007).Google Scholar
[14] Wohlgenannt, M., cond-mat/0609592 pp. 15 (2006).Google Scholar
[15] Bobbert, P. A., Nguyen, T. D., Oost, F. van, Koopmans, B., Wohlgenannt, M., Bipolaron mechanism for organic magnetoresistance, Phys. Rev. Lett. in print (2007).Google Scholar
[16] Schulten, K. and Wolynes, P., J. Chem. Phys. 68, 3292 (1978).10.1063/1.436135Google Scholar
[17] Mermer, O., Veeraraghavan, G., Francis, T., Sheng, Y., Nguyen, D. T., Wohlgenannt, M., Kohler, A., Al-Suti, M., and Khan, M., Phys. Rev. B 72, 205202 (2005).10.1103/PhysRevB.72.205202Google Scholar
[18] Nguyen, T. D., Sheng, Y., Rybicki, J., Veeraraghavan, G., and Wohlgenannt, M., J. Mat. Chem. in print (2007).Google Scholar
[19] Hayer, A., Khan, A. L. T., Friend, R. H., and Kohler, A., Phys. Rev. B 71, 241302 (2005).10.1103/PhysRevB.71.241302Google Scholar
[20] Dhoot, A. S., Ginger, D. S., Beljonne, D., Shuai, Z., and Greenham, N. C., Chem. Phys. Lett. 360, 195 (2002).10.1016/S0009-2614(02)00840-0Google Scholar
[21] Prigodin, V. N., Raju, N. P., Pokhodnya, K. I., Miller, J. S., and Epstein, A. J., Adv. Mat. 14, 1230 (2002).10.1002/1521-4095(20020903)14:17<1230::AID-ADMA1230>3.0.CO;2-53.0.CO;2-5>Google Scholar