Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T17:03:36.673Z Has data issue: false hasContentIssue false

Expected Equivalent Magnetic Noise Spectral Density of Magnetoelectric Composites as Magnetic sensors: From Theory to Experiments

Published online by Cambridge University Press:  23 April 2012

X. Zhuang
Affiliation:
Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen (GREYC), CNRS UMR 6072 – ENSICAEN and the University of Caen Basse Normandie, France 14050 Caen Cedex,
S. Saez
Affiliation:
Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen (GREYC), CNRS UMR 6072 – ENSICAEN and the University of Caen Basse Normandie, France 14050 Caen Cedex,
M. Lam Chok Sing
Affiliation:
Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen (GREYC), CNRS UMR 6072 – ENSICAEN and the University of Caen Basse Normandie, France 14050 Caen Cedex,
C. Cordier
Affiliation:
Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen (GREYC), CNRS UMR 6072 – ENSICAEN and the University of Caen Basse Normandie, France 14050 Caen Cedex,
C. Dolabdjian
Affiliation:
Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen (GREYC), CNRS UMR 6072 – ENSICAEN and the University of Caen Basse Normandie, France 14050 Caen Cedex,
J. Li
Affiliation:
Materials Science and Engineering, Virginia Tech, Virginia 24061, USA
K. McLaughlin
Affiliation:
SAIC, McLean, Virginia, USA
D. Viehland
Affiliation:
Materials Science and Engineering, Virginia Tech, Virginia 24061, USA
Get access

Abstract

With the development of applications involving high sensitivity ferromagnetic-ferroelectric laminates, a systematic analysis of the noise floor for magneto-electric (ME) laminated sensor has become crucial. We report and discuss the results of such an analysis on the noise floor of magnetostrictive-piezoelectric laminates in terms of the magnetic noise spectral density at room temperature. The noise floor of highly sensitive ME laminates with a JFET charge amplifier detection method has been studied. A good correlation was found between the theoretical and experimental noise curves within the measurement bandwidth. The dominating noise sources were found to include the dielectric loss noise, mechanical loss noise of the magneto-electric laminates and the noise sources of the charge amplifier. By using an appropriate low noise JFET charge amplifier, the noise contributions from the amplifier can be made negligible, enabling the measurement of the intrinsic noise of the ME laminates sensor. Thus, we have shown that at low frequencies, below the resonant frequency, the dielectric loss noise predominates with a one-per-root-frequency dependence whereas, around the resonance, the mechanical loss noise prevails over all other noise sources as expected from our theoretical analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nan, C., Phy. Rev. B 50, 6082 (1994).Google Scholar
2. Dong, S., Li, J., and Viehland, D., J. Appl. Phys. 95, 2625 (2004).Google Scholar
3. Fiebig, M., J. Phys. D: Appl. Phys. 38, R 123 (2005).Google Scholar
4. Nan, C., Bichurin, M. I., Dong, S., Viehland, D., and Srinivasan, G., J. Appl. Phys. 103, 031101 (2008).Google Scholar
5. Srinivasan, G., Rasmussen, E. T., Levin, B. J., and Hayes, R., Phys. Rev. B 65, 134402 (2002).Google Scholar
6. Xing, Z., Zhai, J., Dong, S., Li, J., Viehland, D., and Odendaal, W. G., Meas. Sci. Technol. 103, 033903 (2008).Google Scholar
7. Xing, Z., Zhai, J., Gao, J., Li, J., and Viehland, D., IEEE Electron Device Lett. 30, 445 (2009).Google Scholar
8. Zhuang, X., Lam Chok Sing, M., Cordier, C., Saez, S., Dolabdjian, C., Das, J., Gao, J., Li, J., and Viehland, D., IEEE Sensors 11, 2183 (2011).Google Scholar
9. Dong, S., Zhai, J., Li, J-F., and Viehland, D., Appl. Phys. Lett. 89, 122903 (2006).Google Scholar
10. Das, J., Gao, J., Xing, Z., Li, J., and Viehland, D., Appl. Phys. Lett. 95, 092501 (2009).Google Scholar
11. Mandal, S. K., Sreenicasulu, G., Petrov, V. M., and Srinivasan, G., Appl. Phys. Lett. 96, 192502 (2010).Google Scholar
12. Wang, Y., Gray, D., Berry, D., Cao, J., Li, M., Li, J., and Viehland, D., Advanced Materials 23, 4111 (2011).Google Scholar
13. Kdner, N. J., Homrighaus, Z. J., Mason, T. O., and Garboczi, E. J., Thin Solid Films 496, 539 (2006).Google Scholar
14. Levinzon, F. A., IEEE Sensors J. 5, 1235 (2005).Google Scholar
15. Maglione, M., and Subramanian, M. A., Appl. Phys. Lett. 93, 032902 (2008).Google Scholar
16. Xing, Z., Li, J., and Viehland, D., Appl. Phys. Lett. 91, 142905 (2007).Google Scholar
17. Gabrielson, T. B., IEEE TRANS. ELECTRON DEV. 40, 903 (1993).Google Scholar
18. Zhuang, X., Lam Ckok Sing, M., Cordier, C., Saez, S., Dolabdjian, C., Shen, L., Li, J., and Viehland, D., IEEE Sensors 11, 2266 (2011).Google Scholar
19. Zhuang, X., Lam Chok Sing, M., Saez, S., Cordier, C., Dolabdjian, C., Gao, J., Li, J., and Viehland, D., J. Appl. Phys. 109, 124512 (2011).Google Scholar