Published online by Cambridge University Press: 10 February 2011
We propose the application of ZnO:X (X = Li, Mg, N, In, Al, Mn, Gd, Yb etc.) films for a monolithic Optical Integrated Circuit (OIC). Since ZnO exhibits excellent piezoelectric effect and has also electro-optic and nonlinear optic effects and the thin films are easily obtained, it has been studied as one of the important thin film wave guide materials especially for an acoustooptic device[1]. In terms of electro-optic and nonlinear optic effects, however, LiNbO3 or LiTaO3 is superior to ZnO. The most important issue of thin film waveguide using such ferroelectrics is optical losses at the film/substrate interface and the film surface, because the process window to control the surface morphology is very narrow due to their high deposition temperature. Since ZnO can be grown at extremely low temperature, the roughness at the surface and the interface is expected to be minimized. This is the absolute requirement especially for waveguide using a blue or ultraviolet laser. Recently, lasing at the wavelength of ultraviolet, ferroelectric and antiferromagnetic behaviors of ZnO doped with various exotic elements (exotic doping) have been reported. This paper discusses the OIC application of ZnO thin films doped with exotic elements.