Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:39:54.282Z Has data issue: false hasContentIssue false

Excess Pu Disposition in Zirconolite-Rich Synroc Containing Nepheline

Published online by Cambridge University Press:  15 February 2011

E. R. Vance
Affiliation:
ANSTO, Menai, NSW 2234, Australia, erv@nucleus.ansto.gov.au
K. P. Hart
Affiliation:
ANSTO, Menai, NSW 2234, Australia, erv@nucleus.ansto.gov.au
R. A. Day
Affiliation:
ANSTO, Menai, NSW 2234, Australia, erv@nucleus.ansto.gov.au
B. D. Begg
Affiliation:
ANSTO, Menai, NSW 2234, Australia, erv@nucleus.ansto.gov.au
P. J. Angel
Affiliation:
ANSTO, Menai, NSW 2234, Australia, erv@nucleus.ansto.gov.au
E. Loi
Affiliation:
ANSTO, Menai, NSW 2234, Australia, erv@nucleus.ansto.gov.au
J. Weir
Affiliation:
ANSTO, Menai, NSW 2234, Australia, erv@nucleus.ansto.gov.au
V. M. Oversby
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA, USA.
Get access

Abstract

A titanate Synroc ceramic for the immobilization of Pu-bearing waste was designed to consist of 70 wt% zirconolite (CaZrTi2O7) + 15 wt% nepheline (NaAlSiO4) + 15 wt% rutile (TiO2). It contained 10 wt% of Pu plus 6 wt% of Gd as a neutron poison. The material was made by our standard sol-gel route, using a mixture of alkoxides and nitrates, followed by stirdrying and calcination. It was fabricated by hot-pressing at 1150–1250°C/20 MPa for 2 hours in a collapsible metal bellows. Though zirconolite was the majority phase, ∼20 wt% of perovskite also formed. Some of the Na, intended for nepheline, partitioned into the titanate phases. 84-day differential total leach rates of Pu were in the order of 10−5 g/m2/d at 90 and 200°C. Companion ceramics using molar substitution of Ce for Pu confirmed the idea that Ce is a good simulant of Pu from a solid state chemical view, but that there are limitations in terms of leach rate parallels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. “Management and Disposition of Excess Weapons Plutonium”, Committee on International Security and Arms Control, National Academy of Sciences, National Academy Press, Washington DC, USA (1994).Google Scholar
2. Blackford, M. G., Smith, K. L. and Hart, K. P., in Scientific Basis for Nuclear waste Management XV, Ed. Sombret, C. G., Elsevier, New York, 243 (1991).Google Scholar
3. Hough, A. and Marples, J. A. C., The Radiation stability of Synroc:Final report, AEA-FS-0201(H), AEA Technology, UK.Google Scholar
4. Vance, E. R., Begg, B. D., Day, R. A. and Ball, C. J., Zirconolite-based ceramics for Actinide Wastes, in Scientific Basis for Nuclear Waste Management XVIII, Eds. Murakami, T. and Ewing, R. C., Materials Research society, Pittsburgh, PA, USA, 775 (1995).Google Scholar
5. Vance, E. R., Jostsons, A., Day, R. A., Begg, B. D. and Angel, P. J., this conferenceGoogle Scholar
6. Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M. and Ramm, E. J., in Radioactive Waste Forms for the Future, Eds. Lutze, W. and Ewing, R. C., Elsevier, North Holland, 233 (1988).Google Scholar
7. Muraoka, S., Mitamura, H., Matsumoto, S, Vance, E. R. and Hart, K. P., Proc. 9th Pacific Basin Nuclear Conference, Sydney, Ed. McDonald, N. R., Institution of Engineers Australia, 873 (1994).Google Scholar
8. Clinard, F. W. Jr., Peterson, D. E., Rohr, D. L. and Hobbs, L. W., J. Nucl. Mater. 126, 245 (1984)Google Scholar
9. Vance, E. R., Hayward, P. J. and George, I. M., Phys. Chem. Glasses, 27, 107 (1986).Google Scholar
10. Lumpkin, G. R., Smith, K. L. and Blackford, M. G., J. Nucl. Mater., 224, 31(1995)Google Scholar
11. Smith, K. L., Hart, K. P., Lumpkin, G. R., McGlinn, P., Lam, P. and Blackford, M. G., in, Scientific Basis for Nuclear Waste Management XIV, Eds. Abrajano, T. Jr. and Johnson, L. H., Materials Research Society, Pittsburgh, PA, USA, 167 (1991).Google Scholar
12. Ota, T., Yamai, I. and Suzuki, K., J. Mater. Sci., 13, 393 (1994).Google Scholar
13. Tole, M. P., Lasaga, A. C., Pantano, C. and White, W. B., Geochim. Cosmochim. Acta 50, 379 (1986).Google Scholar
14. Vance, E. R., Ball, C. J., Day, R. A., Smith, K. L., Blackford, M. G., Begg, B. D. and Angel, P. J., J.Alloys and Compounds, 213/214, 406 (1994).Google Scholar
15. Vance, E. R., Day, R. A., Carter, M. L. and Jostsons, A., this conferenceGoogle Scholar