Published online by Cambridge University Press: 29 June 2011
The SLIM-Cut process is a kerf-free wafering technique to obtain silicon substrates as thin as 50μm. The quality of the resulting material must be assessed to ensure that this innovative Si-foil approach does not jeopardize the potential efficiency of the final solar cell in terms of electronic activity, defect density and location. For that reason, we performed Microwave-Detected Photoconductance Decay (MW-PCD), Deep-Level Transient Spectroscopy (DLTS) and optical inspections after defect etching of the foils surface. Analyses indicate that SLIM-Cut generates crystallographic defects which create deep level traps that have a negative impact on the lifetime of the silicon foil. Nonetheless, a decrease of the thermal budget will lead to a reduction of plasticity and hence lower the amount of defects and increase the foil quality.