Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T14:02:19.952Z Has data issue: false hasContentIssue false

Evaluation of a Collagen-Hyaluronate Bilayer Matrix for Bone and Cartilage Repair

Published online by Cambridge University Press:  15 March 2011

Lin-Shu Liu
Affiliation:
Orquest, Inc. 365 Ravendale Drive, Mountain View, CA 94043, USA
Andrea Thompson
Affiliation:
Orquest, Inc. 365 Ravendale Drive, Mountain View, CA 94043, USA
Robin Daverman
Affiliation:
Orquest, Inc. 365 Ravendale Drive, Mountain View, CA 94043, USA
James W. Poser
Affiliation:
Orquest, Inc. 365 Ravendale Drive, Mountain View, CA 94043, USA
Robert C. Spiro
Affiliation:
Orquest, Inc. 365 Ravendale Drive, Mountain View, CA 94043, USA
Get access

Abstract

We have developed a novel bilayer matrix composed of a porous type I collagen layer that transitions into a hyaluronate gel layer. This study evaluates the potential of the bilayer matrix to support the in vitro and in vivo formation of both bone and cartilage tissue. In the presence of recombinant human growth and differentiation factor-5, fetal rat calvarial cells cultured in the HA layer grew in a round, aggregated, chondrocyte-like morphology, while those in the collagen layer grew flattened and spread. Biochemical analysis demonstrated that cells in the collagen layer expressed higher levels of alkaline phosphatase activity, and lower levels of sulfated glycosaminoglycans and type II collagen when compared to cells in the HA layer. Intramuscular implants of the bilayer matrix with growth factor retrieved at 28 days revealed the presence of bone and cartilage tissue in the collagen and hyaluronate layers, respectively. These results demonstrate that the differentiation of cells in response to a single growth factor can be guided by specific compositional changes of the extracellular matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Boudreau, N., Bissel, M. J., Curr. Opin. Cell Biol. 10, 640 (1998)Google Scholar
2. Burg, K.J.L., Poter, S., and Kellam, J.F., Biomaterials, 21, 2347 (2000)Google Scholar
3. Temenoff, J.S. and Mikos, A.G., Biomaterials, 21, 2405 (2000)Google Scholar
4. Basic, N., Basic, V., Bulic, K., Grgic, M., Kleinman, H. K., Luyten, F. P., Vukicevic, S., J. Bone Miner. Res. 11, 384 (1996)Google Scholar
5. Luwik, C. W., Alblas, M. J., Ruit, M. van de, Papapoulos, S. E., Pluijm, G. van der, Anal. Biochem. 213, 426 (1993)Google Scholar
6. Fardale, R.W., Buttle, D.J., and Barrett, A.J., Biochim. Biophys. Acta. 883, 173 (1986)Google Scholar
7. Alini, M., Carey, D.. Hirata, S., Grynpas, M.D., Pidoux, I., Poole, A.R., J. Bone Miner. Res. 73A 1064(1994)Google Scholar
8. Juliano, R., Haskell, S., J. Cell Biol. 120, 577 (1993)Google Scholar
9. Heidaran, M. A., Daverman, R., Thompson, A., Ng, C. K., Pohl, J., Poser, J. W., Spiro, R. C., e-Biomed, 2, 121 (2000)Google Scholar
10. Spiro, R. C., Pacetti, S., Thompson, A., Lotz, J. C., Aufdemorte, T. B., Poser, J. W., Trans. Orthop. Res. Soc. 22, 753 (1997)Google Scholar
11. Tay, B. K., Le, A. X., Heilman, M., Lotz, J., Bradford, D. S., Spine, 23 (21), 2276 (1998)Google Scholar
12. Kujawa, M. J. and Caplan, A. I., Dev. Biol. 114, 504 (1986)Google Scholar
13. Spiro, R. C., Liu, L. S., Heidaran, M. A., Thompson, A. Y., Ng, C. K., Pohl, J. P. and Poser, J. W., Biochem. Soc. Trans. 28(4), 362 (2000)Google Scholar
14. Storm, E. E., Huynh, T. V., Copeland, N. G., Genkins, N. A., Kinsley, D. M., Lee, S-J.. Nature 369, 639 (1994)Google Scholar