Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T04:04:53.205Z Has data issue: false hasContentIssue false

Esters of Maleic Anhydride as Both a New and Old Material for Tissue Engineering

Published online by Cambridge University Press:  31 January 2011

Elizabeth L. Hedberg-Dirk
Affiliation:
edirk@unm.edu, University of New Mexico, Department of Chemical and Nuclear Engineering, Albuquerque, New Mexico, United States
Kirsten Nicole Cicotte
Affiliation:
kcicott@sandia.gov, University of New Mexico, Center for Biomedical Engineering, 1 University New Mexico, MSC 01 1141, Albuquerque, New Mexico, 87131, United States
Shawn M. Dirk
Affiliation:
smdirk@sandia.gov, Sandia National Laboratories, Organic Materials, P.O. Box 5800, MS 0888, Albuquerque, New Mexico, 87185, United States
Get access

Abstract

Many publications have examined the biodegradable polymer poly(propylene fumerate) (PPF) for use in tissue engineering applications. We have examined a similar crosslinkable polymer system, poly(propylene fumerate)-co-(propylene maleate) (PPFcPM), derived from maleic anhydride (MA) and 1,2-propanediol (PD). Two methods were examined in order to synthesis the copolymer. In the first case, the reaction was carried out at high temperature (250°C) under nitrogen using tosic acid as the catalyst. Only PPF was identified due to the thermal isomerization of the maleate groups to the more stable fumerate group. In the second case, toluene was used as the solvent to azeotropically (85 °C) remove water and drive the acid catalyzed esterification reaction. In the lower temperature case, a small amount of fumerate (<30%) was identified. Both polymer systems had glass transition temperatures (Tg) below room temperature. The PPFcPM copolymer was electrospun and crosslinked in situ to form porous micro- and nano fiber mats. Initial biocompatibility studies have also been preformed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 He, S.; Timmer, M. D.; Yaszemski, M. J.; Yasko, A. W.; Engel, P. S.; Mikos, A. G., Polymer 42, 1251 2000.Google Scholar
2 Porter, B. D.; Oldham, J. B.; He, S. L.; Zobitz, M. E.; Payne, R. G.; An, K. N.; Currier, B. L.; Mikos, A. G.; Yaszemski, M. J., J Biomech Eng 122, 286 2000.Google Scholar
3 Timmer, M. D.; Ambrose, C. G.; Mikos, A. G., J. Biomed. Mater. Res., Part A 66A, 811 2003.Google Scholar
4 Yaszemski, M. J.; Payne, R. G.; Hayes, W. C.; Langer, R.; Mikos, A. G., Biomaterials 17, 2127 1996.Google Scholar
5 Wang, S.; Kempen, D. H.; Simha, N. K.; Lewis, J. L.; Windebank, A. J.; Yaszemski, M. J.; Lu, L., Biomacromolecules 9, 1229 2008.Google Scholar
6 Hedberg, E. L.; Kroese-Deutman, H. C.; Shih, C. K.; Crowther, R. S.; Carney, D. H.; Mikos, A. G.; Jansen, J. A., Biomaterials 26, 4616 2005.Google Scholar
7 Hedberg, E. L.; Shih, C. K.; Lemoine, J. J.; Timmer, M. D.; Liebschner, M. A. K.; Jansen, J. A.; Mikos, A. G., Biomaterials 26, 3215 2005.Google Scholar
8 Peter, S. J.; Suggs, L. J.; Yaszemski, M. J.; Engel, P. S.; Mikos, A. G., J. Biomater. Sci., Polym. Ed. 10, 363 1999.Google Scholar
9 Fisher, J. P.; Holland, T. A.; Dean, D.; Engel, P. S.; Mikos, A. G., J. Biomater. Sci., Polym. Ed. 12, 673 2001.Google Scholar
10 Jedlovcnik, R.; Sebenik, A.; Golob, J.; Korbar, J., Polym. Eng. Sci. 35, 1413 1995.Google Scholar
11 Grobelny, J., Polymer 36, 4215 1995.Google Scholar
12 Larez V, C. J.; Perdomo Mendoza, G. A., J. Appl. Polym. Sci. 43, 1605 1991.Google Scholar
13 Nichifor, M.; Chitanu, G.; Carpov, A., Acta Polym. 43, 86 1992.Google Scholar