Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:34:48.651Z Has data issue: false hasContentIssue false

Equilibrium Shape of CoSi2 in Silicon

Published online by Cambridge University Press:  21 February 2011

D.D. Adams
Affiliation:
Department of Materials Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI, 48109-2136
S.S. Yalisove
Affiliation:
Department of Materials Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI, 48109-2136
D.D. Eaglesham
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, N.J., 07974
Get access

Abstract

The energetics associated with the formation of CoSi2 have been investigated by using the equilibrium shape of isolated precipitates. Two types of precipitates were studied: CoSi2 equilibrated at the Si surface and CoSi2 equilibrated within the Si lattice. CoSi2 precipitates form by facetting along {111} and {1100} planes in Si. Using a reverse Wulff approach, a ratio of interfacial free energies of γ{100} / γ{111) has been measured to be 1.43 ± 0.07.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murarka, S.P., Silicides for VLSI Applications. (Academic, New York, 1983).Google Scholar
2. Xiao, Z.G., Rozgonyi, G.A., Canovai, C.A., and Osburn, C.M., J. Mater. Res. 7, 269 (1992).Google Scholar
3. Nygren, S. and Johansson, S., J. Appl. Phys. 68, 1050 (1990).Google Scholar
4. Tsui, B.Y., Tsai, J. Y., and Chen, M.C., J. Appl. Phys. 68, 4350 (1991).Google Scholar
5. Wang, Q.F., Tsai, J.Y., Osbum, C.M., Chapman, R., and McGuire, G.E., Appl. Phys. Lett. 61, 2920 (1992).Google Scholar
6. Bachmann, L., Sawyer, D.L., and Siegel, B.M., J. Appl. Phys. 36, 304 (1966).Google Scholar
7. Hummel, R.E. and Breitling, H. M., Appl. Phys. Lett. 18, 373 (1971).Google Scholar
8. Srolovitz, D.J. and Safran, S.A., J. Appl. Phys. 60, 247 (1986).Google Scholar
9. Yalisove, S.M., Tung, R.T., and Loretto, D., J.Vac. Sci. Tech. A 6, 1472 (1989).Google Scholar
10. Mantl, S. and Bay, H.L., Appl. Phys. Lett. 61, 267 (1992).Google Scholar
11. Yalisove, S.M., Eaglesham, D.J., and Tung, R.T., Appl. Phys. Lett. 55, 2075 (1989).Google Scholar
12. Wulff, G., Z. Kristallog. 34, 449 (1901).Google Scholar
13. Yalisove, S.M., Adams, D.P., and Karpenko, O.P., 1993 (unpublished).Google Scholar
14. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc., 133, 666 (1986).Google Scholar
15. Herring, C., Structure and Properties of Solid Surfaces. (University Press, Chicago, 1953) pp. 572.Google Scholar
16. Eaglesham, D.J., Unterwald, F.C., and Jacobson, D.C., Phys. Rev. Lett. 79, 966 (1993).Google Scholar