Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:35:42.884Z Has data issue: false hasContentIssue false

Epitaxial Growth Of Platinum-Group Metal Silicides On (111) SI

Published online by Cambridge University Press:  26 February 2011

Y. S. Chang
Affiliation:
Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan, ROC
J. J. Chu
Affiliation:
Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan, ROC
L. J. Chen
Affiliation:
Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan, ROC
Get access

Abstract

Epitaxial ruthenium, osmium, rhodium and iridium suicides have been successfully grown on silicon. Electroless chemical plating was used to deposit platinum-group metal thin films on silicon. Two step annealing was found to be effective in inducing the growth and improving the quality of the epitaxial suicide on silicon.

Transmission electron microscopy was applied to characterize the microstructures and determine the orientation relationships between epitaxial suicides and substrate Si. The compositions of deposited films were determined by scanning Auger electron spec-troscopy combined with depth profiling technique. The percentages of phosphorus were found to be in the range of 2–3 at. %.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saitoh, S., Ishiwara, H., and Furukawa, S., Appl. Phys. Lett. 37, 643 (1980)Google Scholar
2. Asano, T. and Ishiwara, , Appl. Phys. Lett. 42, 517 (1982)Google Scholar
3. Tung, R.T., Gibson, J.M., and Poate, J.M., Phys. Rev. Lett. 50, 429 (1983)Google Scholar
4. Tung, R.T., Phys. Rev. Lett. 52, 461 (1984)Google Scholar
5. Cheng, H.C., Yew, T.R. and Chen, L.J., J. Appl. Phys. 57, 5246 (1985)Google Scholar
6. Shiau, F.Y., Cheng, H.C., and Chen, L.J., Appl. Phys. Lett. 45, 524 (1984)Google Scholar
7. Chien, C.J., Chen, H.C., Nieh, C.W. and Chen, L.J., J. Appl. Phys. 57, 1887 (1985)Google Scholar
8. Cheng, H.C., Yew, T.R. and Chen, L.J., Appl. Phys. Lett. 47, 128(1985)Google Scholar
9. Cheng, H.C. and Chen, L.J., Appl. Phys. Lett. 46, 562 (1985)Google Scholar
10. Lin, W.T. and Chen, L.J., Appl. Phys. Lett. 46, 1061(1985)Google Scholar
11. Lin, W.T. and Chen, L.J., J. Appl. Phys. 58, 1515 (1985)Google Scholar
12. Fung, M.S., Cheng, H.C., and Chen, L.J., Appl. Phys. Lett. 47 (In Press)Google Scholar
13. Lian, Y.C. and Chen, L.J., Appl. Phys. Lett. 48 (In Press)Google Scholar
14. Durney, L.J., “Electroplating Engineering Handbook”, 4th Ed. (Van Norstrand Reinhold, New York 1984) p.439 Google Scholar
15. Chang, Y.S. and Lee, J.Y., Proc. 1984 ROC International'Electronic Devices and Materials Symposium, edited by Chen, L.J., Hsinchu, Taiwan, 491 (1984)Google Scholar
16. Ishiwara, H., Saitoh, S. and Hikosaka, K., Jpn. J. Appl. Phys. 20, 843 (1981)Google Scholar
17. Poutcharovsky, D.J. and Parthe', E., Acta Cryst. B 30, 2692 (1974)Google Scholar
18. Israiloff, P. and Vollenkle, H., Monatshefte for Chemie, 105, 1313 (1974)Google Scholar
19. Petersson, C.S., Baglin, J.E.E., Dempsey, J.J., Dd'Heurle, F.M. and La Placa, S.J., J. Appl. Phys. 53, 4866 (1982)Google Scholar
20. Psaras, P.A., Thompson, R.D. and Tu, K.N., Appl. Phys. Lett. 47, 250 (1985)Google Scholar
21. Tu, K.N. and Mayer, J.W., in Thin Films-Interdiffusion and Reactions, edited by Poate, J.M., Tu, K.N. and Mayer, J.W. (Wiley, New York, 1978), p.359 Google Scholar