Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T14:09:34.567Z Has data issue: false hasContentIssue false

Epitaxial Crystallization of Amorphous Silicon Layers under Ion Irradiation: Orientation Dependence

Published online by Cambridge University Press:  25 February 2011

D. M. Maher
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974, USA
R. G. Elliman
Affiliation:
CSIRO Division of Material Science and Technology, Clayton 3168, Australia
J. Linnros
Affiliation:
CSIRO Division of Material Science and Technology, Clayton 3168, Australia
J. S. Williams
Affiliation:
RMIT Microelectronics Technology Centre, Melbourne, Australia
R. V. Knoell
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974, USA
W. L. Brown
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974, USA
Get access

Abstract

Ion-beam induced epitaxial crystallization of thin amorphous silicon layers at {100} and {110} crystalline/amorphous interfaces exhibits no orientation dependencies, whereas at a {111} crystalline/amorphous interface a weak orientation dependency relative to thermal-induced epitaxial crystallization is observed. This behavior supports an interpretation in which the thermal crystallization process is dominated by the need to form interfacial defects and/or growth sites and in the ion-beam experiment this formation process ocurrs athermally. It is thought that the observed orientation dependent regrowth on a {111} substrate relative to a {100} (or {110}) substrate is associated with the special correlated atomic sequencing which is believed to control solid-phase epitaxial crystallization at a {111) crystalline/amorphous interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Csepregi, L., Kennedy, E. F., Mayer, J.W. and Sigmon, T.W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
2. Williams, J.S., Brown, W.L., Elliman, R.G., Knoell, R.V., Maher, D.M. and Seidel, T.E., Mat. Res. Soc. Symp. Proc. 45,79 (1985). Also see J.S. Williams, R.G. Elliman, W.L. Brown and T.E. Seidel, Phys. Rev. Lett. 55, 1482 (1985).Google Scholar
3. Ferla, A. La, Cannavo, S., Ferla, G., Campisano, S.U., Rimini, E. and Servidori, M., Nucl. Instr. and Meth. B19/20, 470 (1987).Google Scholar
4. Elliman, R.G., Williams, J.S., Brown, W.L., Leiberich, A., Maher, D.M. and Knoell, R.V., Nucl. Instr. and Meth. B19/20, 435 (1987).Google Scholar
5. Maher, D.M., Seidel, T.E., Williams, J.S., Elliman, R.G., Knoell, R.V., Ellington, M.B., Hull, R. and Jacobson, D.C., in SEMICONDUCTOR SILICON 1986, edited by Huff, H.R., Abe, T. and Kolbesen, B. (Electrochem. Soc. Pennington, 1986) 86–4, pp. 678695.Google Scholar
6. Ellington, M.B., Maher, D.M. and Short, K. (unpublished).Google Scholar
7. Olson, G.L., Kokorowski, S.A., Roth, J.A. and Hess, L.D., Proc. Mat. Res. Soc. 13, 141 (1983).Google Scholar
8. For example, Turnbull, D., Mat. Res. Soc. Symp. Proc. 51, 71 (1985) and F. Spaepen and D. Turnbull, Am. Inst. Phys. Conf. Proc. 50, 50 (1979).Google Scholar
9. Elliman, R.G., Williams, J.S., Maher, D.M. and Brown, W.L., Mat. Res. Soc. Symp. Proc. 51, 319 (1985).Google Scholar
10. Linnros, J., Holmen, G. and Svenson, B., Phys. Rev. 32, 5 (1985).Google Scholar
11. Drosd, R. and Washburn, J., J. Appl. Phys. 53 (1), 397 (1982).Google Scholar
12. Narayan, J., J. Appl. Phys. 53 (12), 8607 (1982).Google Scholar