Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T01:39:00.695Z Has data issue: false hasContentIssue false

Enhanced Thermoelectric Figure of Merit in BaxYbyCo4Sb12 Skutterudites

Published online by Cambridge University Press:  01 February 2011

Ctirad Uher
Affiliation:
cuher@umich.edu, University of Michigan, Physics, 450 Church St., Ann Arbor, MI, 48109-1040, United States, 7347643933, 7347639694
Xun Shi
Affiliation:
xunshi@umich.edu, University of Michigan, Physics, 450 Church St., Ann Arbor, MI, 48109-1040, United States
Huijun Kong
Affiliation:
huijunk@umich.edu, University of Michigan, Physics, 450 Church St., Ann Arbor, MI, 48109-1040, United States
Get access

Abstract

We report on the development of an efficient n-type skutterudite based on the double-filled structure of CoSb3. The chosen filler species Ba and Yb have a large phonon contrast and this combination is very effective in lowering the lattice thermal conductivity. The highest figure of merit in excess of 1.3 is obtained near 800K and the figure of merit greater than unity persists down to temperatures of about 550K. The compounds are synthesized with high purity Co (99.998%) and Sb (99.9999%). In order to reduce the cost of the materials, we have also prepared filled skutterudites of similar composition but using less pure Co (99.8%) and Sb (99.999%). The figure of merit of these lower purity compounds reaches ZT = 1 at 800K with the materials' cost dramatically reduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.See, e.g., Thermoelecric Handbook, ed. Rowe, D. M., CRC Press, Taylor & Francis, Boca Raton, FL, (2006).Google Scholar
2. Uher, C., in Recent Trends in Thermoelectric Materials Research I, Semiconductors and Semimetals, Vol. 69, ed. Tritt, T. M., Academic Press, San Diego, pp. 139253 (2001).Google Scholar
3. Dudkin, L. D., Sov. Physics-Tech. Physics 3, 216 (1958).Google Scholar
4. Jeitschko, W. and Brown, D. J., Acta Crystallog. B 33, 3401 (1977).Google Scholar
5. Slack, G. A., in CRC Handbook of Thermoelectrics, ed. Rowe, D. M., p. 407, CRC Press, Boca Raton, FL, (1995).Google Scholar
6. Morelli, D. T. and Meisner, G. P., J. Appl. Phys. 77, 3777 (1995).Google Scholar
7. Sales, B. C., Mandrus, D., and Williams, R. K., Science 272, 1325 (1996).Google Scholar
8. Chen, B., Xu, J., Uher, C., Morelli, D. T., Meisner, G. P., Fleurial, J-P., Caillat, T., and Borshchevsky, A., Phys. Rev. B 55, 1476 (1997).Google Scholar
9. Grytsiv, A., Rogl, P., Berger, St., Paul, Ch., Bauer, E., Godart, C., Ni, B., Abd-Elmeguid, M. M., Saccone, A., Ferro, R., and Kaczorowski, D., Phys. Rev. B 66, 094411 (2002).Google Scholar
10. Fleurial, J.-P., Borshchevsky, A., Caillat, T., Morelli, D. T., and Meisner, G. P., Proc. 15th International Conference on Thermoelectrics, IEEE Catalog 96TH8169, Piscataway, N. J., p. 91 (1996).Google Scholar
11. Sales, B. C., Mandrus, D., Chakoumakos, B. C., Keppens, V., and Thompson, J. R., Phys. Rev. B 56, 15081 (1997).Google Scholar
12. Shi, X., Zhang, W., Chen, L. D., and Yang, J., Phys. Rev. Lett. 95, 185503 (2005).Google Scholar
13.A table with the critical filling fractions based on experimental results is also given by Uher, C. in Thermoelectric Handbook, ed. Rowe, D. M., CRC Press, Taylor & Francis, Boca Raton, FL, Ch. 34, pp.116 (2006).Google Scholar
14. Chen, L. D., Kawahara, T., Tang, X. F., Goto, T., Hirai, T., Dyck, J. S., Chen, W., and Uher, C., J. Appl. Phys. 90, 1864 (2001).Google Scholar
15. Tang, X. F., Zhang, L. M., Yuan, R. Z., Chen, L. D., Goto, T., Hirai, T., Dyck, J. S., Chen, W., and Uher, C., J. Mater. Res. 16, 3343 (2001).Google Scholar
16. Anno, H. and Matsubara, K., Recent Res. Devel. Applied Phys. 3, 47 (2000).Google Scholar
17. Nolas, G. S., Kaeser, M., IV, R. T. Littleton, and Tritt, T. M., Appl. Phys. Lett. 77, 1855 (2000).Google Scholar
18. Shutoh, N., Tateishi, H., Fukushima, K., and Kondo, N., Proc. 19th Int. Conf. on Thermoelectrics, Ed. Rowe, D. M., Barrow Press, Wales, United Kingdom, p. 387, (2000).Google Scholar
19. Chen, L. D., Tang, X. F., Kawahara, T., Dyck, J. S., Chen, W., Uher, C., Goto, T., and Hirai, T., Proc. 20th Int. Conf. on Thermoelectrics, IEEE Catalog Number 01TH8589, p.57 (2001).Google Scholar
20. Yang, J., Zhang, W., Bai, S. Q., Mei, Z., and Chen, L. D., Appl. Phys. Lett. 90, 192111 (2007).Google Scholar