Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T21:54:01.601Z Has data issue: false hasContentIssue false

Enhanced Efficiency of CIGS Thin Film Solar Cells on Polyimide Substrates

Published online by Cambridge University Press:  31 January 2011

Raquel Caballero
Affiliation:
raquel.caballero@helmholtz-berlin.de, HZB, Technology, Berlin, Germany
Christian A. Kaufmann
Affiliation:
kaufmann@helmholtz-berlin.de, HZB, Technology, Berlin, Germany
Tobias Eisenbarth
Affiliation:
tobias.eisenbarth@helmholtz-berlin.de, HZB, Technology, Berlin, Germany
Axel Eicke
Affiliation:
axel.eicke@zsw-bw.de, ZSW, Stuttgart, Germany
Thomas Unold
Affiliation:
unold@helmholtz-berlin.de, HZB, Technology, Berlin, Germany
Reiner Klenk
Affiliation:
klenk@helmholtz-berlin.de, HZB, Heterogeneous Materials, Berlin, Germany
H.W. Schock
Affiliation:
hans-werner.schock@helmholtz-berlin.de, HZB, Technology, Berlin, Germany
Get access

Abstract

The effect of the amount of Na present during the 3-stage growth of CIGS at very low temperature T2 on polyimide (PI) foils is studied. While at higher growth temperatures Na seems to impede In-Ga interdifussion, at very low temperatures it appears to further the process. An increase in Voc for a higher Na concentration can be explained by a higher net carrier concentration as measured by drive level capacitance profiling. Admittance spectroscopy measurements show shallow defects when the Na concentration increases. These results suggest that the main role of Na could be the passivation of InCu donor deep defect, in agreement with Wei's theory. Efficiencies of up to 15.1 % (0.5 cm2 active area with antireflection coating) and 13.6%, 14.1% (1 cm2 total and active area respectively without antireflection coating) for nominal T2=420° C were achieved on PI substrates so far.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Repins, I. Contreras, M.A. Egaas, B. et al. , Progr. Photovol. Res. Appl. 16, 235(2008).Google Scholar
2. Kaufmann, C.A. Caballero, R. Unold, T. et al. , Sol. Energy Mater. Sol. Cells, doi: 10.1016/j.solmat.2008.10.009.Google Scholar
3. Rudmann, D. Brémaud, D., Zogg, H. and Tiwari, A.N. J. Appl. Phys. 97, 084903(2005).Google Scholar
4. Ishizuka, S. Hommoto, H. Kido, N. et al. , Appl. Phys. Express 1, 092303(2008).Google Scholar
5. Gabor, A.M. Tuttle, J.R. Albin, D.S. et al. , Appl. Phys. Lett. 65, 198(1994).Google Scholar
6. Kaufmann, C. A. Neisser, A. Klenk, R. et al. , Thin Solid Films 480-481, 515(2005).Google Scholar
7. Caballero, R. Kaufmann, C.A. Eisenbarth, T. et al. , Thin Solid Films 517, 2187(2009).Google Scholar
8. Caballero, R. Kaufmann, C.A. Eisenbarth, T. et al. , Phys. Status Solidi A, doi: 10.1002/pssa.200881144.Google Scholar
9. Nishiwaki, S. Satoh, T. Hashimoto, Y. et al. , J. Mater. Res. Vol. 16, No. 2, 394(2001).Google Scholar
10. Rudmann, D. Cunha, A.F. da, Kaelin, M. et al. , Appl. Phys. Lett. 84 (7), 1129 (2004).Google Scholar
11. Rau, U. Schmitt, M. Engelhardt, F. et al. , Solid State Communications Vol. 107, No. 2, 59(1998).Google Scholar
12. Erslev, P.T. Lee, J.W. Shafarmann, W.N. et al. , Thin Solid Films 517, 2277(2009).Google Scholar
13. Eisenbarth, T. Unold, T. Caballero, R. et al. , Thin Solid Films 517, 2244(2009).Google Scholar
14. Wei, S.H. Zhang, S.B. and Zunger, A. J. Appl. Phys. 85, 7214(1999).Google Scholar