Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:18:28.647Z Has data issue: false hasContentIssue false

Enhanced Efficiency Dye Sensitized Solar Cells Through Acid Pre-treatment

Published online by Cambridge University Press:  31 January 2011

Trystan Watson
Affiliation:
t.m.watson@swansea.ac.uk, Swansea University, Materials Research Centre, Swansea, United Kingdom
Daniel Bryant
Affiliation:
367682@swansea.ac.uk, Swansea University, Materials Research Centre, Swansea, United Kingdom
David Worsley
Affiliation:
d.a.worsley@swansea.ac.uk
Get access

Abstract

A nitric acid (2M) pre-treatment is shown to increase the efficiency of a standard dye sensitized solar cell mounted on a FTO glass substrate from 4.15% to 5.12%. The pre-treatment involves immersing an FTO glass electrode coated with commercial ethyl cellulose based TiO2 paste for 1-60 minutes prior to sintering at 450°C. The pre-treatment leads to agglomeration of the TiO2 creating a scattering layer which covers the acid treated surface on short term immersion (<30 mins) and penetrates the bulk layer upon long immersion. The scattering layer itself takes up less of the sensitizing (N719) dye but scatters photons in the rest of the film. The optimum immersion time under room temperature conditions was found to be ca 20 minutes since at much longer immersion times the bulk film particle agglomeration reduced efficiency. The choice of anion in the acid is critical with certain species, notably phosphate, resulting in blockage of dye absorption sites in the entire film resulting in reduced cell efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Oregan, B. and Gratzel, M.: 1991, 353, 737740.Google Scholar
2 Nazeeruddin, M. K. Kay, A. Rodicio, I. Humphrybaker, R. Muller, E. Liska, P. Vlachopoulos, N., and Gratzel, M.: J. Am. Chem. Soc. 1993, 115, 63826390.Google Scholar
3 Gratzel, M.: Nature, 2001, 414, 338344.Google Scholar
4 Barbe, C. J. Arendse, F. Comte, P. Jirousek, M. Lenzmann, F. Shklover, V. and Gratzel, M.: J. Am. Ceram. Soc., 1997, 80, 31573171.Google Scholar
5 Park, N. G. Schlichthorl, G. Lagemaat, J. van de, Cheong, H. M. Mascarenhas, A. and Frank, A. J.: J. Phys. Chem. B, 1999, 103, 33083314.Google Scholar
6 Sommeling, P. M. O'Regan, B. C., Haswell, R. R. Smit, H. J. P. Bakker, N. J. Smits, J. J. T., Kroon, J. M. and Roosmalen, J. A. M. van: J. Phys. Chem. B, 2006, 110, 1919119197.Google Scholar
7 Wang, P. Zakeeruddin, S. M. Comte, P. Charvet, R. Humphry-Baker, R., and Gratzel, M.: J. Phys. Chem. B, 2003, 107, 1433614341.Google Scholar
8 Wang, Z. S. Li, F. Y. and Huang, C. H.: J. Phys. Chem. B 2001, 105, 92109217.Google Scholar
9 Wang, Z. S. Yamaguchi, T. Sugihara, H. and Arakawa, H.: J. Phys. Chem. B 2005, 21, 42724276.Google Scholar
10 Jung, H. S. Lee, J. K. Lee, S. Hong, K. S. and Shin, H.: J. Phys. Chem. C 2008, 112, 84768480.Google Scholar
11 Hao, S. C. Wu, J. H. Fan, L. Q. Huang, Y. F. Lin, H. M. and Wei, Y. L.: Sol. Energy 2004, 76, 745750.Google Scholar
12 Kalyanasundaram, K. and Gratzel, M.: Coord. Chem. Rev., 1998, 177, 347414.Google Scholar
13 Ferber, J. and Luther, J.: Sol. Energy Mater. Sol. Cells, 1998, 54, 265275.Google Scholar
14 Tachibana, Y. Hara, K. Sayama, K. and Arakawa, H.: Chem. Mat., 2002, 14, 25272535.Google Scholar
15 Wang, Z. S. Kawauchi, H. Kashima, T. and Arakawa, H.: Coord. Chem. Rev., 2004, 248, 13811389.Google Scholar
16 Usami, A.: Chem. Phys. Lett., 1997, 277, 105108.Google Scholar
17 Hore, S. Vetter, C. Kern, R. Smit, H. and Hinsch, A.: Sol. Energy Mater. Sol. Cells, 2006, 90, 11761188.Google Scholar
18 Nazeeruddin, M. K. Splivallo, R. Liska, P. Comte, P. and Gratzel, M.: Chem. Commun., 2003, 14561457.Google Scholar