No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
We have found that irradiation of a variety of thin film–substrate combinations by heavy ion beams at energies of mega-electronvolts per atomic mass unit will produce a remarkable enhancement in the adherence of the film. For example, gold films can be firmly attached to soft materials such as Teflon using a 1 MeV beam of protons (1014 cm−2) or helium ions (1013 cm−2) and to harder materials such as silicon (1015 cm−2), quartz (2×1015 cm−2) and tungsten (2×1014 cm−2) with 0.5 MeV a.m.u.−1 beams of fluorine or chlorine ions. In the case of metal films on semiconductors a low resistance contact results. The mixed layer at the interface is observed to be quite thin (approximately 50 Å or less); for silver on silicon electron diffraction and imaging studies of the interface region reveal the presence of crystalline silver compounds.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.