Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T16:04:54.456Z Has data issue: false hasContentIssue false

Enhanced Absorption in Amorphous Silicon Solar Cells Using Plasmonic and Photonic Crystals – Measurement and Simulation

Published online by Cambridge University Press:  17 April 2019

Benjamin Curtin
Affiliation:
Microelectronics Research Center; Dept. of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, U.S.A.
Rana Biswas
Affiliation:
Microelectronics Research Center; Dept. of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, U.S.A. Dept. of Physics & Astronomy; Ames Lab, Iowa State University, Ames, Iowa 50011, U.S.A.
Vikram Dalal
Affiliation:
Microelectronics Research Center; Dept. of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, U.S.A.
Get access

Abstract

We develop experimentally and theoretically plasmonic and photonic crystals for enhancing thin film silicon solar cells. Thin film amorphous silicon (a-Si:H) solar cells suffer from decreased absorption of red and near-infrared photons, where the photon absorption length is large. Simulations predict maximal light absorption for a pitch of 700-800 nm for photonic crystal hole arrays in silver or ZnO/Ag back reflectors, with absorption increases of ~12%. The photonic crystal improves over the ideal randomly roughened back reflector (or the ‘4n2 limit’) at wavelengths near the band edge. We fabricated metallic photonic crystal back-reflectors using photolithography and reactive-ion etching. We conformally deposited a-Si:H solar cells on triangular lattice hole arrays of pitch 760 nm on silver back-reflectors. Electron microscopy demonstrates excellent long range periodicity and conformal a-Si:H growth. The measured quantum efficiency increases by 7-8 %, relative to a flat reflector reference device, with enhancement factors exceeding 6 at near-infrared wavelengths. The photonic crystal back reflector strongly diffracts light and increases optical path lengths of solar photons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ferlauto, A.S., Ferreira, G. M., Pearce, J. M., Wronski, C. R., Collins, R. W., Deng, X., Ganguly, G., J. Appl. Phys. 92, 2424 (2002).Google Scholar
2. Zhou, D. and Biswas, R., J. Appl. Phys. 103, 093102 (2008). Biswas, R., Zhou, D., Phys. Status Solidi A 207, No. 3, 667 (2010).Google Scholar
3. Zeng, L., Bermel, P., Yi, Y., Alamariu, B. A., Broderick, K. A., Liu, J., Hong, C., Duan, X., Joannopoulos, J., and Kimerling, L. C., Appl. Phys. Lett. 93, 221105 (2008).Google Scholar
4. Bermel, P., Luo, C., Zeng, L., Kimerling, L.C., Joannopoulos, J., Opt. Express, 15, 16986, (2007).Google Scholar
5. Yan, B., Owens, J. M., Jiang, C., Yang, J. and Guha, S., Mater. Res. Soc. Symp. Proc. 862, A23.3.1 (2005).Google Scholar
6. Springer, J., Poruba, A., Mullerova, L., Vanecek, M., Kluth, O. and Rech, B., J. Appl. Phys. 95, 1427 (2004).Google Scholar
7. Dahal, L. R., Sainju, D., Li, J., Stoke, J. A., Podraza, N., Deng, X., and Collins, R. W., 33rd IEEE Photovoltaic Specialists Conference, 2008. PVSC 2008, pg.1-6. DOI 10.1109/PVSC.2008.4922502.Google Scholar
8. Yablonovitch, E., J. Opt. Soc. Am. 72, 899 (1982).Google Scholar
9. Nelson, J., The Physics of Solar Cells, (Imperial College Press, London, 2003), p. 279.Google Scholar
10. Catchpole, K., Green, M., J. Appl. Phys. 101, 063105 (2007).Google Scholar
11. Biswas, R., Ding, C.G., Puscasu, I., Pralle, M., McNeal, M., Daly, J., Greenwald, A. and Johnson, E., Phys. Rev. B. 74, 045107 (2006).Google Scholar
12.Analysis of Microelectronic and Photonic Structures (AMPS) simulation module, Penn State University.Google Scholar
13. Haug, F.-J., Soderstrom, T., Python, M., Terrazzoni-Daudrix, V., Niquille, X., Ballif, C., Solar energy and Materials 93 884 (2009). Proc. of the 21st European PVSEC, 1651, (2006).Google Scholar
14. Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Schropp, R. E. I., Atwater, H. A., and Polman, A., Appl. Phys. Lett. 95, 183503 (2009).Google Scholar
15. Beck, F. J., Mokapatti, S., Polman, A., and Catchpole, K., Appl. Phys. Lett. 96, 033113 (2010).Google Scholar