Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:23:33.806Z Has data issue: false hasContentIssue false

Embedded Cluster Model: Application to Molecular Crystals

Published online by Cambridge University Press:  01 February 2011

Maija M. Kuklja
Affiliation:
Division of Materials Research, National Science Foundation, Arlington, VA 22230
Frank J. Zerilli
Affiliation:
Naval Surface Warfare Center Indian Head Division, Indian Head, MD 20640, USA
Peter Sushko
Affiliation:
Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
Get access

Abstract

Multiscale modeling using an embedded cluster approach is presented and applied to study the structure and properties of molecular crystals. We discuss the results of hydrostatic compression modeling of 1,1-diamino-2,2-dinitroethylene obtained with the embedded cluster model and the Hartree-Fock method and compare these with the full periodic crystal structure calculations. Details of the electronic structure of the perfect, highly compressed material are discussed. The results demonstrate the applicability of the embedded cluster model. We show that the band gap of the perfect material is not sensitive to hydrostatic compression, but some changes induced by the pressure take place in the valence band.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kuklja, M.M., Stefanovich, E.V., Kunz, A.B., J. of Chem. Phys., 112, 3417 (2000).Google Scholar
2 Kuklja, M.M. and Kunz, A.B., J. Phys. Chem. Solids 61, 35 (2000).Google Scholar
3 Kuklja, M.M. and Kunz, A.B., J. Phys. Chem. B 103, 8427 (1999).Google Scholar
4 Kuklja, M.M. and Kunz, A.B., J. Appl. Phys. 87, 2215 (2000).Google Scholar
5 Kuklja, M.M. and Kunz, A.B., J. Appl. Phys. 86, 4428 (1999).Google Scholar
6 Kuklja, M.M. and Kunz, A.B., An effect of hydrostatic compression on defects in energetic materials: ab initio modeling, in Multiscale Modelling of Materials, edited by Bulatov, V.V., Rubia, T.D., Pjillips, R., Kaxiras, E., Ghoniem, N., Materials Research Society Symposium Proceedings, 538, 347352 (1999).Google Scholar
7 Kuklja, M.M., Kunz, A.B., J. Appl. Phys. 89, 4962 (2001).Google Scholar
8 Kuklja, M.M. and Kunz, A.B., AIP Conference Proceedings 505, 401 (2000).Google Scholar
9 Kuklja, M.M., Aduev, B.P., Aluker, E.D., Krasheninin, V.I., Krechetov, A.G., and Mitrofanov, A. Yu., J. Appl. Phys. 89, 4156 (2001).Google Scholar
10 Kuklja, M.M., Applied Physics A-Materials Science and Processing 76 (3), 359366 (2003).Google Scholar
11 Kuklja, M.M., J. Phys. Chem. B 105, 10 159 (2001).Google Scholar
12 Rashkeev, S.N., Kuklja, M.M., and Zerilli, F.J., Appl. Phys. Lett. 82, 1371 (2003).Google Scholar
13 Kuklja, M.M., Zerilli, F.J., and Peiris, S.M., J. Chem. Phys. 118, 11073 (2003).Google Scholar
14 Zerilli, F. J. and Kuklja, M. M., “Ab-initio 0 K Isotherm for Organic Molecular Crystals”, American Physical Society 2003 Topical Conference on Shock Compression of Condensed Matter, Portland, Oregon, July 20–25, 2003 Google Scholar
15 Zerilli, F.J. and Kuklja, M.M., paper in preparation.Google Scholar
16 Sushko, P.V., Shluger, A.L., and Catlow, C.R.A., Surface Sci., 450, 153 (2000).Google Scholar
17 Sushko, P.V., Shluger, A.L., Baetzold, R.C., and Catlow, C.R.A., J. Phys.: Condens. Matter, 12, 8257 (2000).Google Scholar
18 Bemm, U., Östmark, H., Acta Cryst. C54, 19971999 (1998).Google Scholar
19 Hartree, D.R., Proc. Cambridge Philos. Soc., 24, 89 (1928).Google Scholar
20 Fock, V., Z. Phys. 61, 126 (1930).Google Scholar
21 Sulimov, V.B., Sushko, P.V., Edwards, A.H., Shluger, A.L., Stoneham, A.M., Phys. Rev. B 66, 024108 (2002)Google Scholar
22 Dovesi, R., Saunders, V.R., Roetti, C., Causà, M., Harrison, N.M, Orlando, R., and Aprà, E., in CRYSTAL95 User’s Manual (University of Torino, Torino, 1996).Google Scholar
23 Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G.,. Robb, M.A,. Cheeseman, J.R, Keith, T.A., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B.B, Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J.,. Binkley, J.S, Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C, Pople, J.A, in Gaussian 94 (Revision D.1), Gaussian Inc., Pittsburgh, Pennsylvania (1995).Google Scholar
24 Towler, M.D., Zupan, A. and Causà, M., Comp. Phys. Commun. 98, 181 (1996).Google Scholar
25 Sorescu, D.C., Boatz, J. A., Thompson, D. L., J. Phys. Chem. A 105, 5010 (2001).Google Scholar
26 Pertsin, A.J., Kitaigorodsky, A.I., in The Atom-Atom Potential Method, Applications to Organic Molecular Solids; (Springre-Verlag: Berlin, Germany) 1987.Google Scholar
27 Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., in Numerical Recipes, 2nd ed. (Cambridge University Press, Cambridge, 1992).Google Scholar
28 Gilardi, R., Naval Research Laboratory (private communications, 2001).Google Scholar
29 Kolb, J. R. and Rizzo, H. F., Propellants and Explosives 4, 1016 (1979).Google Scholar
30 Peiris, S. M., Wong, C. P., Zerilli, F. J., submitted to J. Chem. Phys.Google Scholar
31 Kuklja, M.M. and Kunz, A.B., unpublished results.Google Scholar
32 Peiris, S. and Gump, J., private Communications.Google Scholar
33 Reed, E.J., Joannopoulos, J.D., Fried, L.E., Phys. Rev. B., 62, 16500 (2000).Google Scholar
34 Wu, C.J., Yang, L.H., Fried, L.E., Phys. Rev. B., 67, 235101 (2003).Google Scholar