Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:33:45.877Z Has data issue: false hasContentIssue false

Electro-Optic Polymer Devices

Published online by Cambridge University Press:  15 February 2011

Rick Lytel
Affiliation:
Lockheed Palo Alto Research Laboratory, Palo Alto, CA 94304.
Ferris Lipscomb
Affiliation:
Lockheed Palo Alto Research Laboratory, Palo Alto, CA 94304.
Tony Ticknor
Affiliation:
Lockheed Palo Alto Research Laboratory, Palo Alto, CA 94304.
Get access

Abstract

Electro-optic (EO)polymers, processed into thin multilayer films, exhibit large nonresonant EO coefficients and low dielectric constants from DC to multi-GHz frequencies. Orientation of the constituent nonlinear optical chromophores, usually accomplished by electricfield poling, provides an EO coefficient suitable for modulation of light beams propagating in the plane of the polymer film. Thus, EO polymers are ideally suited for applications in integrated optics.

The field EO polymer integrated optics has been developing rapidly during the past several years. Recent advances include the formulation of poled crosslinked epoxies and guest-host polyimides exhibiting thermal stability at temperatures significantly higher than those previously achieved with thermoplastic acrylate chemistry. These developments are an essential first step toward achieving practical materials exhibiting stability to manufacture, assembly, and end-use in modem electronic systems applications. This paper provides an introduction to EO polymer waveguide devices for applications to electronic packaging and interconnection.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Garito, A.F., Wu, J., Lipscomb, G.F., and Lytel, R., “Nonlinear Optical Polymers: Challenges and Opportunities in Photonics”, Materials Research Society Symp. Proc. Vol.173, 467 (1990).Google Scholar
2. Lalama, S.J. and Garito, A.F., “Origin of the Nonlinear Second-order Optical Susceptibilities of Organic Systems”, Phys. Rev. A 20, 1179 (1979).Google Scholar
3. Singer, K.D. and Garito, A.F., “Measurements of Molecular Second-order Optical Susceptibilities Using DC Induced Second Harmonic Generation”, J. Chem. Phys. 25, 3572 (1981).Google Scholar
4. Singer, K.D., Sohn, J.E., and Kuzyk, M.G., “Orientationally Ordered Electro-optic Materials”, in Nonlinear Ontical and Electro-active Polymers, Prasad, P.N. and Ulrich, D.R., ed., Plenum Press, New York (1988) p. 189.CrossRefGoogle Scholar
5. Singer, K. D., Sohn, J.E., and Lalama, S.J., Appl. Phys. Lett. 49 248 (1986), and K.D. Singer, M.G. Kuzyk and J.E. Sohn, “Second-Order nonlinear-optical processors in orientationally ordered materials: relationship between molecular and macroscopic properties”, J. Opt. Soc. Am. B4, 968 (1987).CrossRefGoogle Scholar
6. Williams, D.J., “Nonlinear Optical Properties of Guest-Host Polymer Structures”, in Nonlinear Optical Properties of Organic Molecules and Crystals, Vol.1, Chemla, D. and Zyss, J., ed., Academic Press, NY (1987), p. 405.CrossRefGoogle Scholar
7. Thackara, J.I., Lipscomb, G.F., Stiller, M.A., Ticknor, A.J. and Lytel, R., “Poled Electro-optic Waveguide Formation in Thin-film Organic Media”, Appl. Phys. Lett. 52, 1031 (1988).CrossRefGoogle Scholar
8. Mohlmann, G. R., Horsthuis, W.H., Vorst, C.P. van der, “Recent Developments in Optically Nonlinear Polymers and Related Electro-Optic Devices,” Proc. SPIE 1112, 67 (1989).Google Scholar
9. Diemeer, M.B.J., Suyten, F.M.M., Trammel, E.S., McDonach, A., Copeland, M.J., Jenneskens, L.J. and Horsthuis, W.H.G., Electronics Letters 26 (6) 379 (1990).CrossRefGoogle Scholar
10. Singer, K. D., Holland, W. R., Kuzyk, M.G., Wolk, G. L., Katz, H.E., Schilling, M.L., “Second Order Nonlinear Optical Devices in Poled Polymers,” Proc. SPIE 1147, 233 (1989).CrossRefGoogle Scholar
11. Girton, D.G., Kwiatkowski, S., Lipscomb, G.F., and Lytel, R., “20 GHz Electro-optic Polymer Mach-Zehnder Modulator”, Appl. Phys. Lett. 58, 1730 (1991).CrossRefGoogle Scholar
12. Lytel, R., Lipscomb, G.F., Stiller, M., Thackara, J.I., and Ticknor, A.J., “Organic Integrated Optical Devices”, in Nonlinear Optical Effects in Polymers. Messier, J., Kajzar, F., Prasad, P., and Ulrich, D., eds., NATO ASI Series Vol. 162 (1989), p. 227.Google Scholar
13. Eldering, C.A., Knoesen, A., and Kowel, S.T., “Characterization of Polymeric Electro-optic Films Using Metal Mirror/Electrode Fabry-Perot Etalons”, Proc. SPIE 1332, 348 (1990).Google Scholar
14. Eck, T.E. Van, Ticknor, A.J., Lytel, R., and Lipscomb, G.F., “A Complementary Optical Tap Fabricated in an Electro-optic Polymer Waveguide”, Appl. Phys. Lett. 5, 1558 (1991).Google Scholar
15. Singer, K. D., Sohn, J.E., and Lalama, S.J., Appl. Phys. Lett. 42, 248 (1986), and K.D. Singer, M.G. Kuzyk and J.E. Sohn, “Second-Order nonlinear-optical processors in orientationally ordered materials: relationship between molecular and macroscopic properties”, J Opt. Soc. Am. B14, 968 (1987).Google Scholar
16. Williams, D.J., “Nonlinear Optical Properties of Guest-Host Polymer Structures”, in Nonlinear Optical Properties of Organic Molecules and Crystals, Vol.1, Chemla, D. and Zyss, J., ed., Academic Press, NY (1987), p. 405.Google Scholar
17. Wu, J. W., “Birefringent and Electro-optic Effects in Poled Polymer Films: Steady State and Transient Properties”, J. Opt. Soc. Am. 1B 8, 142 (1991).Google Scholar
18. Valley, J. F., Wu, J. W., and Valencia, C. L., “Heterodyne Measurement of Poling Transient Effects in Electro-optic Polymer Thin Films”, Appl. Phys. Lett. 57, 1084 (1990).Google Scholar
19. Lytel, R.S., “Applications of Electro-optic Polymers to Integrated Optics”, Proc. SPIE 1216, 30 (1990).CrossRefGoogle Scholar
20. Jungbauer, D., Reck, B., Twieg, R., Yoon, D. Y., Wilson, C. G., and Swalen, J. D., “Highly Efficient and Stable Nonlinear Optical Polymers via Chemical Cross-linking under Electric Field”, Appl. Phys. Lett. 5, 2610 (1990).Google Scholar
21. Ermer, S., Kenney, J., Wu, J., Valley, J., Lytel, R., and Garito, A.F., “Thermally Stable Electrooptic Polymers”, ACS Polymer Preprints 32, 92 (1991).Google Scholar
22. Lytel, R., Lipscomb, G.F., Binkley, E.S., Kenney, J.T., and Ticknor, A.J., “Electro-optic Polymer Waveguide Devices”, in Materials for Nonlinear Optics: Chemical Perspectives, Marder, S.R., Sohn, J.E., and Stucky, G.D., eds., ACS Symposium Series No. 455 (American Chemical Society, 1991), p. 103.Google Scholar
23. Wu, J.W., Valley, J.F., Ermer, S., Binkley, E.S., Kenney, J.T., Lipscomb, G.F., Lytel, R., “Thermal Stability of Electro-Optic Response in Poled Polyimide Systems”, Appl. Phys. Lett., 58, 225 (1991).Google Scholar
24. Wu, J.W., Binkley, E.S., Kenney, J.T., and Lytel, R., “High Thermally Stable Electro-optic Response in Poled Guest-Host Polyimide Systems Cured at 360° C”, J. Appl. Phys. 69, 7366 (1991).Google Scholar
25. Wu, J.W., Valley, J.F., Stiller, M.A., Ermer, S.P., Binkley, E.S., Kenney, J.T., Lipscomb, G.F., and Lytel, R., “Poled Polyimides as Thermally Stable Electro-optic Polymers”, Proc. SPIE 1560, 196 (1991).Google Scholar
26. Valley, J.F., Wu, J.W., Ermer, S., Stiller, M., Binkley, E.S., Kenney, J.T., Lipscomb, G.F., and Lytel, R., “Thermoplasticity and Parallel-plate Poling of Electro-optic Polyimide Host Thin Films”, Appl. Phys. Lett. 60, 160 (1992).Google Scholar
27. Lytel, R., Lipscomb, G.F., Kenney, J.T., and Binkley, E.S., “Large Scale Integration of Electro-optic Polymer Waveguides”, submitted to Polymers for Lightwave and Integrated Optics: Technology and Applications, Hornak, L.A., editor (Marcel Dekker, June 1992).Google Scholar
28. Rainal, A.J., “Performance Limits of Electrical Interconnections to a High Speed Chip,” IEEE Transactions on Components, Hybrids and Manufacturing Technology 1, 260 (1988).CrossRefGoogle Scholar
29. Hartman, D. H., “Digital high speed interconnects: a study of the optical alternative,” Opt. Eng. 25, 1086 (1986).Google Scholar
30. Feldman, M.R., Esener, S.C., Guest, C.C. and Lee, S.H., “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742 (1988).Google Scholar
31. Lytel, R.S., Lipscomb, G.F., Kenney, J.T., Binkley, E.S., “Electro-Optic Polymer Materials and Devices For Optical Interconnect Applications”, Proc. SPIE 1215, 252 (1990), and references therein.Google Scholar
32. Wale, M.J. and Edge, C., “Self-aligned Flip-Chip Assembly of Photonic Devices with Electrical and Optical Connections”, IEEE Trans. Comp., Hybrids, and Manuf. 13, 780 (1990).Google Scholar
33. Lytel, R., Lipscomb, G.F., Binkley, E.S., Kenney, J.T., and Ticknor, A.J., “Electro-optic Polymers for Optical Interconnects”, Proc. SPIE 1215, 252 (1990).Google Scholar
34. Multichip Modules, Johnson, R.W., Teng, R.K.F., and Balde, J.W., eds., IEEE Press Selected Reprint Series (New York, 1991), Part 6.Google Scholar
35. Hartman, D.H., Grace, M.K., and Ryan, C.R., “A Monolithic Silicon Photodetector/Amplifier IC for Fiber and Integrated Optics Application”, J. Lightwave Tech. Vol. LT-3, 729 (1985).CrossRefGoogle Scholar
36. Matthews, M.R., MacDonald, B.M., and Preston, K.R., “Optical Components-The New Challenge in Packaging”, IEEE Trans. Comp., Hybrids, and Manuf. 13, 798 (1990).CrossRefGoogle Scholar
37. Reith, L.A., Mann, J.W., Andredakis, N.C., Lalk, G.R., and Zah, C-E, “Single-mode Fiber Packaging for Semiconductor Optical Devices”, IEEE Trans. Comp., Hybrids, and Manuf. 13, 791 (1990).CrossRefGoogle Scholar
38. Katsura, K., Hayashi, T., Ohira, F., Hata, S., and Iwashita, K., “A Novel Flip-chip Interconnection Technique using Solder Bumps for High-speed Photoreceivers”, J. Lightwave Tech. 8, 1323 (1990).Google Scholar
39. Rein, H.-M., “Silicon Bipolar Integrated Circuits for Multigigabit-per-Second Lightwave Communications”, J. Lightwave Tech. 8, 1371 (1990).Google Scholar