Published online by Cambridge University Press: 01 January 1992
A cluster expansion for energetics is combined with a direct, real-space method of studying the electronic structure of ordered and disordered ternary intermetallics. The electronic structure calculations are based on an explicit averaging of local quantities over a small number of randomly chosen configurations. Quantities such as densities of states, one-electron energies, etc., are computed within the framework of the first-principles tight-binding linear muffin-tin orbital method (TB-LMTO). Effective pair interactions, which describe the ordering tendencies of the alloy, are computed for the full ternary alloy. With this technique, then, the effects on ordering trends of ternary additions to a binary alloy may be obtained. Results for Ag-Pd-Rh and Ni-Al-Cu are shown. The self-consistency of these calculations is checked against the fully self-consistent ordered LMTO calculations.