Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:41:00.328Z Has data issue: false hasContentIssue false

Electronic Structure at Tetratetracontane/Au(111) Interface

Published online by Cambridge University Press:  01 February 2011

Kaname Kanai
Affiliation:
kaname@mat.chem.nagoya-u.ac.jp, Nagoya University, Research Center for Materials Science, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan, +81-52-789-3657, +81-52-789-2944
Yukio Ouchi
Affiliation:
ohuchi@mat.chem.nagoya-u.ac.jp, Nagoya University, Nagoya, 464-8602, Japan
Kazuhiko Seki
Affiliation:
seki@mat.chem.nagoya-u.ac.jp, Nagoya University, Nagoya, 464-8602, Japan
Get access

Abstract

Modification of the quasi two-dimensional surface state on Au(111) surface with adsorption of n-alkane molecule, tetratetracontane: TTC was investigated by angle-resolved photoemission spectroscopy (ARUPS) and X-ray photoemission spectroscopy (XPS). From ARUPS the energy band structure of the surface state of Au(111) surface is found to be significantly affected by TTC adsorption. The modified surface potential on Au(111) surface by the adsorption confines the surface electrons into the quantum well newly established between TTC wide energy gap and sp band gap of the Au(111) surface increasing its localization nature. Clear chemical shift in C 1s core level was observed in XPS spectrum for TTC layer right at the interface and small back-donation from Au(111) surface to TTC unoccupied states is suspected. On the other hand, a large interface dipole layer about 0.72 eV was observed by TTC adsorption. From these results, Pauli repulsion effect is expected not to have dominant effect on such large dipole formation on TTC adsorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ishii, H., Morikawa, E., Tang, S. J., Yoshimura, D., Ito, E., Okudaira, K.K., Miyamae, T., Hasegawa, S., Sprunger, P. T., Ueno, N., Seki, K., and Saile, V., J. Electron Spectros. Rela. Phenom. 101, 559 (1999).10.1016/S0368-2048(98)00352-1Google Scholar
2. Yoshimura, D., Miyamae, T., Hasegawa, S., Hosoi, Y., Sakurai, Y., Yamamoto, M., Ishii, H., Ouchi, Y., Ueno, N., and Seki, K., Mat. Res. Soc. Symp. Proc., 734, 155 (2003).Google Scholar
3. Yoshimura, D., Ishii, H., Ouchi, Y., Ito, E., Miyamae, T., Hasegawa, S., Okudaira, K. K., Ueno, N., and Seki, K., Phys. Rev. B, 60, 9046 (1999).10.1103/PhysRevB.60.9046Google Scholar
4. Yoshimura, D., Ishii, H., Ouchi, Y., Ito, E., Miyamae, T., Hasegawa, S., Ueno, N., and Seki, K., Jpn. J. Appl. Phys., 38, 340 (1999).Google Scholar
5. Yamamoto, M. and Sakurai, Y. and Hosoi, Y. and Ishii, H. and Kajikawa, K. and Ouchi, Y. and Seki, K., J. Phys. Chem. B, 104, 7363 (2000).10.1021/jp994481oGoogle Scholar
6. Ueno, N., Sugita, K., Seki, K., and Inokuchi, H., Phys. Rev. B, 34, 6386 (1986).10.1103/PhysRevB.34.6386Google Scholar
7. Ueno, N., Fukushima, T., Sugita, K., Kiyono, S., Seki, K., and Inokuchi, H., J. Phys. Soc. Jpn., 48, 1254 (1980).10.1143/JPSJ.48.1254Google Scholar
8. Ishii, H., Sugiyama, K., Ito, E., and Seki, K., Adv. Mat., 11, 605 (1999).10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q3.0.CO;2-Q>Google Scholar
9.For example, Reinnert, F., J. Phys.: Condens. Matter, 15, S693 (2003).Google Scholar