Published online by Cambridge University Press: 21 February 2011
Selective area deposition of thin films and surface structures with precise control over their composition is possible in UHV by using low energy electron beams to induce electronic excitations in adsorbed molecular layers. Upon electron impact, adsorbed/co-adsorbed molecules decompose into reactive species, resulting in film growth. The composition of the film reflects that of the adsorbed molecular layer, which at cryogenic temperatures can sensitively be controlled by the partial pressure of the reactant gases. We present results of detailed studies of adsorption, thermal and electron-beam-induced dissociation of disilane and ammonia on silicon. We show that by proper choice of temperature, gas phase composition and electron beam, amorphous silicon, silicon nitride, oxide, silicon oxinitride films can be grown with nearly monolayer thickness resolution.