Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T23:53:08.026Z Has data issue: false hasContentIssue false

Electron Traps in n-GaN Grown on Si (111) Substrates by MOVPE

Published online by Cambridge University Press:  01 February 2011

Tsuneo Ito
Affiliation:
itot@dowa.co.jp, DOWA Electronics Materials Co.,Ltd., DOWA Semiconductor AKITA, Sunada 1, Iijima, Akita, 011-0911, Japan
Yutaka Terada
Affiliation:
yutaka_1213jp@yahoo.co.jp, Nagoya Institute of Technology, Research Center for Nano-Device and System, Gokiso-cho,Showa-ku, NAGOYA, 466-8555, Japan
Takashi Egawa
Affiliation:
egawa.takashi@nitech.ac.jp, Nagoya Institute of Technology, Research Center for Nano-Device and System, Gokiso-cho,Showa-ku, NAGOYA, 466-8555, Japan
Get access

Abstract

Deep level electron traps in n-GaN grown by metal organic vapor phase epitaxy (MOVPE) on Si (111) substrate were studied by means of deep level transient spectroscopy (DLTS). The growth of n-GaN on different pair number of AlN/GaN superlattice buffer layers (SLS) system and on c-face sapphire substrate are compared. Three deep electron traps labeled E4 (0.7-0.8 eV), E5 (1.0-1.1 eV), were observed in n-GaN on Si substrate. And the concentrations of these traps observed for n-GaN on Si are very different from that on sapphire substrate. E4 is the dominant of these levels for n-GaN on Si substrate, and it behaves like point-defect due to based on the analysis by electron capture kinetics, in spite of having high dislocation density of the order of 1010 cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Feltin, E. Beaumont, B. Laügt, M., Mierry, P. De, Vennéguè, P., Leroux, M. and Gibart, P. Phys. Stat. Sol (a), 188, 531 (2001); Appl. phys. Lett. 79, 3230 (2001)Google Scholar
2. Dadgar, A. Bläsing, J., Diez, A. Alam, A. Heuken, M. and Krost, A. Jpn. J. Appl. Phs. 39, L1183 (2000)Google Scholar
3. Selvaraj, S. Lawrence, Ito, T. Terada, Y. and Egawa, T. Appl. Phys. Lett. 90, 173506 (2007).Google Scholar
4. Metzger, T. Hopler, R. Born, E. Ambacher, O. Stutzmann, M. Stommer, R. Schuster, M. and Gobel, H. Philos. Mag. A 77, 1013 (1998).Google Scholar
5. Haase, D. Schmid, M. Kürner, W., Dörnen, A., Härle, V., Scholz, F. Burkard, M. and Schweizer, H. Appl. phys. Lett. 69, 2525 (1996).Google Scholar
6. Polenta, L. Castaldini, A. and Cavallini, A. Appl. phys. Lett. 102, 063702 (2007).Google Scholar
7. Wang, C. D. Yu, L.S. Lau, S. S. Yu, E. T. Kim, W. Botchkarev, A. E. and Morkoç, H., Appl. phys. Lett. 72, 1211 (1998).Google Scholar
8. Hacke, P. Okushi, H. Kuroda, T. Detchprohm, T. Hiramatsu, K. and Sawaki, N. J.Cryst. Growth 189/190, 541 (1998).Google Scholar
9. Fang, Z.Q. Look, D. C. Visconti, P. Wang, D.F. Lu, C.Z. Yun, F. and Morkoç, H., Appl. phys. Lett. 78, 2178 (2001).Google Scholar
10. Emiroglu, D. Evans-Freeman, J. H., Kappers, M. J. McAleese, C. and Humphreys, C. J. Physica B401-402, 311 (2007).Google Scholar
11. Polyakov, A. Y. Smirnov, N. B. Govorkov, A.V. Fang, Z.Q. Look, D. C. Park, S. S. and Han, J. H. J. Appl. Phs. 92, 5241 (2002).Google Scholar
12. Fang, Z.Q. Look, D. C. Kim, D. H. and Adesida, I. Appl. phys. Lett. 87, 182115 (2005).Google Scholar