Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T19:34:51.199Z Has data issue: false hasContentIssue false

Electron emission mechanism of diamond characterized by combined XPS/UPS/FES

Published online by Cambridge University Press:  01 February 2011

Hisato Yamaguchi
Affiliation:
yhisato@nt.icu.ac.jp, International Christian University, Department of Physics, Okano Laboratory, Department of Physics, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo, 181-8585, Japan, +81 (0)422 33 3254, +81 (0)422 33 3254
Takatoshi Yamada
Affiliation:
takatoshi-yamada@aist.go.jp, National Institute of Advanced Industrial Science and Technology (AIST), Diamond Research Center, Japan
Bradford B. Pate
Affiliation:
pate@wsu.edu, Washington State University, Department of Physics, United States
Masato Kudo
Affiliation:
kudo@jeol.co.jp, JEOL Ltd., Technical Division 1, Japan
Yuji Takakuwa
Affiliation:
takakuwa@tagen.tohoku.ac.jp, Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, Japan
Ken Okano
Affiliation:
kenokano@icu.ac.jp, International Christian University, Department of Physics, Japan
Get access

Abstract

Diamond has various advantages as an electron emitter in addition to the low-threshold voltage, negative electron affinity (NEA), high thermal conductivity, high mechanical hardness, and high chemical stability. The difficulty in clarification of electron emission mechanism is preventing diamond from being used in the practical use. It is extremely difficult to identify the surface potential of the emitting diamond from conventional Emission current (I)- Anode voltage (V) characteristics. If one could measure the potential of the emitting surface, the band diagram of emitting diamond can be completed. The combined spectroscopy of XPS/UPS/FES specially built for this study, is one of the most powerful tool, which could identify the potential of the emitting surface. In this study, we have succeeded in observing the origin of field-emitted electrons using our combined XPS/UPS/FES system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Okano, K., Yamada, T., Sawabe, A., Koizumi, S., Itoh, J., and Amaratunga, G. A. J., Appl. Phys. Lett. 79, 275 (2001).Google Scholar
2. Bandis, C., and Pate, B. B., Appl. Phys. Lett. 69, 366 (1996).Google Scholar
3. Okano, K., Koizumi, S., Silva, S. R. P., and Amaratunga, G. A. J., Nature (London) 381, 140 (1996).Google Scholar
4. Okano, K., Hoshina, K., Iida, M., Koizumi, S., Inuzuka, T., Appl. Phys. Lett. 64, 2742 (1994).Google Scholar
5. Okano, K., Yamada, T., Ishihara, H., Koizumi, S., Itoh, J., Appl. Phys. Lett. 70, 2201 (1997).Google Scholar
6. Geis, M. W., Twichell, J. C., Macaulay, J., and Okano, K., Appl. Phys. Lett. 67, 1328 (1995).Google Scholar
7. Yamada, T., Ishihara, H., Okano, K., Koizumi, S., Itoh, J., J. Vac. Sci. Technol. B 15, 1678 (1997).Google Scholar
8. Yamaguchi, H., Mine, T., Suzuki, Y., Yamada, T., Sawabe, A., and Okano, K., J. Vac. Sci. Technol. B, 21, 1730 (2003).Google Scholar
9. Himpsel, F. J., Knapp, J. A., Van Vechten, J. A., Eastman, D. E., Phys. Rev. B 20, 624 (1979).Google Scholar
10. Pate, B. B., Surf. Sci. 165, 83 (1986).Google Scholar
11. van der Weide, J., Nemanich, R. J., J. Vac. Sci. Technol. B 10 1940, (1992).Google Scholar
12. Geis, M. W., Gregory, J. A., and Pate, B. B., IEEE Trans. Electron Devices, 38, 619 (1991).Google Scholar
13. Cui, J. B., Ristein, J., and Ley, L., Phys. Rev. B 60, 16135 (1999).Google Scholar
14. Kajihara, S. A., Antonelli, A., Bernholc, J., and Car, R., Phys. Rev. Lett. 66, 2010 (1991).Google Scholar
15. Fowler, R. H., Nordheim, L., Proc. R. Soc. London, A 119, 173 (1928).Google Scholar